Yanhui Wang

York Seminar

(Yanhui Wang) Network right ∗[-abundant semigroups](#page-82-0) 27th Nov. 2024 1 / 41

 \leftarrow

- Preliminaries: networks
- Background & Questions
- Preliminaries: right ∗ abundant semigroups
- Constructions
- Congruence-free
- Homomorphisms

 \leftarrow

Preliminaries: networks

Definition 1 A network $\Gamma = (V, T, s, r)$ consists of the set of vertices V, the set of relations T, together with mappings $s, r : T \rightarrow \mathcal{P}(V)$, respectively called the source mapping and the range mapping for Γ, where $P(V)$ is the power set of V and for all $t \in T$, $s(t)$ and $r(t)$ are disjoint non-empty subsets of V.

Let $\Gamma = (V, T, s, r)$ be a network. Put

 $T^0 = \{A \subseteq V : \exists t \in T, A = s(t) \text{ or } A = r(t)\} \cup V,$

and for all $A \in \mathcal{T}^0$, $\mathbf{s}(A) = \mathbf{r}(A) = A$.

Definition 2 A path in a network $\Gamma = (V, T, s, r)$ is a finite sequence $\alpha=t_1t_2\cdots t_n$ of elements of $\, \mathcal{T}\cup\,\mathcal{T}^0$ such that $\, \mathsf{r}(t_i)\cap\mathsf{s}(t_{i+1})\neq\emptyset$ for $i = 1, 2, \dots, n - 1$. In such a case, $s(\alpha) = s(t_1)$ is the source of α , $\mathbf{r}(\alpha) = \mathbf{r}(t_n)$ is the *range* of α .

An element in \mathcal{T}^0 is said to be an empty $\mathsf{path}.$

Let $\Gamma = (V, T, s, r)$ be a network. Put $T^0 = \{A \subseteq V : \exists t \in T, A = s(t) \text{ or } A = r(t)\} \cup V,$ and for all $A\in\mathcal{T}^0$, $\mathsf{s}(A)=\mathsf{r}(A)=A$.

Definition 2 A path in a network $\Gamma = (V, T, s, r)$ is a finite sequence $\alpha=t_1t_2\cdots t_n$ of elements of $\, \mathcal{T}\cup\,\mathcal{T}^0$ such that $\, \mathsf{r}(t_i)\cap\mathsf{s}(t_{i+1})\neq\emptyset$ for $i = 1, 2, \dots, n - 1$. In such a case, $s(\alpha) = s(t_1)$ is the source of α , $\mathbf{r}(\alpha) = \mathbf{r}(t_n)$ is the *range* of α .

An element in \mathcal{T}^0 is said to be an empty $\mathsf{path}.$

Let $\Gamma = (V, T, s, r)$ be a network. Put $T^0 = \{A \subseteq V : \exists t \in T, A = s(t) \text{ or } A = r(t)\} \cup V,$ and for all $A\in\mathcal{T}^0$, $\mathsf{s}(A)=\mathsf{r}(A)=A$. Definition 2 A **path** in a network $\Gamma = (V, T, \mathbf{s}, \mathbf{r})$ is a finite sequence $\alpha=t_1t_2\cdots t_n$ of elements of $\, \mathcal{T}\cup\,\mathcal{T}^0$ such that $\, {\sf r}(t_i)\cap {\sf s}(t_{i+1})\neq\emptyset$ for $i = 1, 2, \dots, n - 1$. In such a case, $s(\alpha) = s(t_1)$ is the source of α , $\mathbf{r}(\alpha) = \mathbf{r}(t_n)$ is the *range* of α .

An element in \mathcal{T}^0 is said to be an empty $\mathsf{path}.$

Let $\Gamma = (V, T, s, r)$ be a network. Put $T^0 = \{A \subseteq V : \exists t \in T, A = s(t) \text{ or } A = r(t)\} \cup V,$ and for all $A\in\mathcal{T}^0$, $\mathsf{s}(A)=\mathsf{r}(A)=A$. Definition 2 A **path** in a network $\Gamma = (V, T, \mathbf{s}, \mathbf{r})$ is a finite sequence $\alpha=t_1t_2\cdots t_n$ of elements of $\, \mathcal{T}\cup\,\mathcal{T}^0$ such that $\, {\sf r}(t_i)\cap {\sf s}(t_{i+1})\neq\emptyset$ for $i = 1, 2, \dots, n - 1$. In such a case, $s(\alpha) = s(t_1)$ is the source of α ,

 $\mathbf{r}(\alpha) = \mathbf{r}(t_n)$ is the *range* of α .

An element in \mathcal{T}^0 is said to be an empty $\mathsf{path}.$

Let $P(\Gamma)$ denote the set of all paths in a network Γ . This includes the zero-element 0 and \mathcal{T}^0 .

$$
P(\Gamma) = \{t_1 \cdots t_n : t_i \in \mathcal{T} \cup \mathcal{T}^0, \mathbf{r}(t_i) \cap \mathbf{s}(t_{i+1}) \neq \emptyset \text{ for } i = 1, \cdots, n-1\}
$$

$$
\cup \{0\}
$$

Definition 3 If $\mathbf{r}(t_i) = \mathbf{s}(t_{i+1})$ for $i = 1, \dots, n-1$ in $\alpha = t_1 \cdots t_n \in P(\Gamma)$, then α is said to be a **linear path**.

Let $LP(\Gamma)$ denote the set of all linear paths in Γ . This includes \mathcal{T}^0 but does not contain the zero element 0.

 $LP(\Gamma) = \{t_1 \cdots t_n \in P(\Gamma) \setminus \{0\} : r(t_i) = s(t_{i+1}) \text{ for } i = 1, \cdots, n-1\}.$

Let $P(\Gamma)$ denote the set of all paths in a network Γ . This includes the zero-element 0 and \mathcal{T}^0 .

$$
P(\Gamma) = \{t_1 \cdots t_n : t_i \in \mathcal{T} \cup \mathcal{T}^0, \mathbf{r}(t_i) \cap \mathbf{s}(t_{i+1}) \neq \emptyset \text{ for } i = 1, \cdots, n-1\}
$$

$$
\cup \{0\}
$$

Definition 3 If $\mathbf{r}(t_i) = \mathbf{s}(t_{i+1})$ for $i = 1, \dots, n-1$ in $\alpha = t_1 \cdots t_n \in P(\Gamma)$, then α is said to be a linear path.

Let $LP(\Gamma)$ denote the set of all linear paths in Γ . This includes \mathcal{T}^0 but does not contain the zero element 0.

 $LP(\Gamma) = \{t_1 \cdots t_n \in P(\Gamma) \setminus \{0\} : r(t_i) = s(t_{i+1}) \text{ for } i = 1, \cdots, n-1\}.$

つひひ

Let $P(\Gamma)$ denote the set of all paths in a network Γ . This includes the zero-element 0 and \mathcal{T}^0 .

$$
P(\Gamma) = \{t_1 \cdots t_n : t_i \in \mathcal{T} \cup \mathcal{T}^0, \mathbf{r}(t_i) \cap \mathbf{s}(t_{i+1}) \neq \emptyset \text{ for } i = 1, \cdots, n-1\}
$$

$$
\cup \{0\}
$$

Definition 3 If $\mathbf{r}(t_i) = \mathbf{s}(t_{i+1})$ for $i = 1, \dots, n-1$ in $\alpha = t_1 \cdots t_n \in P(\Gamma)$, then α is said to be a linear path.

Let $\mathit{LP}(\Gamma)$ denote the set of all linear paths in Γ . This includes \mathcal{T}^0 but does not contain the zero element 0.

$$
LP(\Gamma) = \{t_1 \cdots t_n \in P(\Gamma) \setminus \{0\} : \mathbf{r}(t_i) = \mathbf{s}(t_{i+1}) \text{ for } i = 1, \cdots, n-1\}.
$$

Background

- Let $\Gamma = (V, T, s, r)$ be a graph.
	- **1962, Leavitt path algebra** Leavitt, W. G.
	- 2 1975, Graph inverse semigroups -Ash, C. J. and Hall, T. E.
	- \bullet 1998, Cuntz-Krieger graph C^* -algebras $-$ Kumjian, A., Pask, D. and Raeburn, I.

4 · · ·

Questions There exists a kind of paths $p = t_1t_2 \cdots t_n$ of relations $t_i \in T_{\Gamma}$ with either $\mathbf{r}(t_i) = \mathbf{s}(t_{i+1})$ or $\mathbf{r}(t_i) \neq \mathbf{s}(t_{i+1})$ but $\mathbf{r}(t_i) \cap \mathbf{s}(t_{i+1}) \neq \emptyset$ for $i = 1, \ldots, n - 1$ in a network. Naturally, one may ask what kind of algebraic systems such paths may lead to?

Background

Let $\Gamma = (V, T, s, r)$ be a graph.

- **1962, Leavitt path algebra** Leavitt, W. G.
- 2 1975, Graph inverse semigroups Ash, C. J. and Hall, T. E.
- \bullet 1998, Cuntz-Krieger graph C^* -algebras $-$ Kumjian, A., Pask, D. and Raeburn, I.

Questions There exists a kind of paths $p = t_1t_2 \cdots t_n$ of relations $t_i \in \mathcal{T}_{\Gamma}$ with either $\mathbf{r}(t_i) = \mathbf{s}(t_{i+1})$ or $\mathbf{r}(t_i) \neq \mathbf{s}(t_{i+1})$ but $\mathbf{r}(t_i) \cap \mathbf{s}(t_{i+1}) \neq \emptyset$ for $i = 1, \ldots, n - 1$ in a network. Naturally, one may ask what kind of algebraic systems such paths may lead to?

 QQ

 4 \cdot

- Green's star relations
- Right ∗-abundant semigroups
- Right ample semigroups

Let S be a semigroup. For all $a, b \in S$,

$$
a\mathcal{L}^*b \Leftrightarrow \forall x, y \in S^1\big(ax = ay \Leftrightarrow bx = by\big)
$$

and

$$
a\mathcal{R}^*b \Leftrightarrow \forall x, y \in S^1(xa = ya \Leftrightarrow xb = yb).
$$

Notice that $\mathcal{L} \subseteq \mathcal{L}^*$ and $\mathcal{R} \subseteq \mathcal{R}^*$ on any semigroup S. For any regular elements $a,b\in S$, $(a,b)\in\mathcal{L}^*$ if and only if $(a,b)\in\mathcal{L}$ and $(a,b)\in\mathcal{R}^*$ if and only if $(a, b) \in \mathcal{R}$. In particular, if S is a regular semigroup, then $\mathcal{L}^* = \mathcal{L}$ and $\mathcal{R}^* = \mathcal{R}$.

Let S be a semigroup. For all $a, b \in S$,

$$
a\mathcal{L}^*b \Leftrightarrow \forall x, y \in S^1\big(ax = ay \Leftrightarrow bx = by\big)
$$

and

$$
a\mathcal{R}^*b \Leftrightarrow \forall x, y \in S^1(xa = ya \Leftrightarrow xb = yb).
$$

Notice that $\mathcal{L} \subseteq \mathcal{L}^*$ and $\mathcal{R} \subseteq \mathcal{R}^*$ on any semigroup S. For any regular elements $a,b\in\mathcal{S},$ $(a,b)\in\mathcal{L}^*$ if and only if $(a,b)\in\mathcal{L}$ and $(a,b)\in\mathcal{R}^*$ if and only if $(a, b) \in \mathcal{R}$. In particular, if S is a regular semigroup, then $\mathcal{L}^* = \mathcal{L}$ and $\mathcal{R}^* = \mathcal{R}$.

つひひ

Definition 4 A right abundant semigroup S is said to be a right *-abundant semigroup if each \mathcal{L}^* -class of S contains a unique idempotent.

Let S be a right *-abundant semigroup with set of idempotents $E(S)$. We denote the unique idempotent of $E(S)$ in the \mathcal{L}^* -class of a by a $^*.$

Then $*$ is a unary operation on a right $*$ -abundant semigroup S and we may regard S as an algebra of type $(2, 1)$ and call such algebras **unary** algebras; as such, morphisms must preserve the unary operation of $*$ (and hence the relation \mathcal{L}^*). Of course, any semigroup isomorphism must preserve the additional operations.

Definition 4 A right abundant semigroup S is said to be a right *-abundant semigroup if each \mathcal{L}^* -class of S contains a unique idempotent.

Let S be a right *-abundant semigroup with set of idempotents $E(S)$. We denote the unique idempotent of $E(S)$ in the \mathcal{L}^* -class of a by a $^*.$

Then $*$ is a unary operation on a right $*$ -abundant semigroup S and we may regard S as an algebra of type $(2, 1)$ and call such algebras **unary** algebras; as such, morphisms must preserve the unary operation of $*$ (and hence the relation \mathcal{L}^*). Of course, any semigroup isomorphism must preserve the additional operations.

Definition 4 A right abundant semigroup S is said to be a right *-abundant semigroup if each \mathcal{L}^* -class of S contains a unique idempotent.

Let S be a right $*$ -abundant semigroup with set of idempotents $E(S)$. We denote the unique idempotent of $E(S)$ in the \mathcal{L}^* -class of a by $a^*.$

Then $*$ is a unary operation on a right $*$ -abundant semigroup S and we may regard S as an algebra of type $(2, 1)$ and call such algebras **unary** algebras; as such, morphisms must preserve the unary operation of $*$ (and hence the relation \mathcal{L}^*). Of course, any semigroup isomorphism must preserve the additional operations.

Definition 4 A right abundant semigroup S is said to be a right *-abundant semigroup if each \mathcal{L}^* -class of S contains a unique idempotent.

Let S be a right *-abundant semigroup with set of idempotents $E(S)$. We denote the unique idempotent of $E(S)$ in the \mathcal{L}^* -class of a by $a^*.$

Then $*$ is a unary operation on a right $*$ -abundant semigroup S and we may regard S as an algebra of type $(2, 1)$ and call such algebras unary algebras; as such, morphisms must preserve the unary operation of $*$ (and hence the relation \mathcal{L}^*). Of course, any semigroup isomorphism must preserve the additional operations.

Definition 5 A right ample semigroup is defined to be a semigroup such that

- (i) each \mathcal{L}^* -class contains an idempotent;
- (ii) the idempotents commute;

(iii) $ea = a(ea)^*$ for any element a in S and any idempotent e in S.

Dually, a left ample semigroup is defined. An ample semigroup is defined to be a left and right ample semigroup.

In particular, an inverse semigroup is ample, where $\vec{a}^{\dagger}=\vec{a}\vec{a}^{-1}$ and $a^* = a^{-1}a$, where a^{\dagger} is the unique idempotent in the \mathcal{R}^* -class containing a and a^{-1} is the inverse of a .

Definition 5 A right ample semigroup is defined to be a semigroup such that

- (i) each \mathcal{L}^* -class contains an idempotent;
- (ii) the idempotents commute;

(iii) $ea = a(ea)^*$ for any element a in S and any idempotent e in S.

Dually, a left ample semigroup is defined. An ample semigroup is defined to be a left and right ample semigroup.

In particular, an inverse semigroup is ample, where $\it{a}^\dagger = \it{aa}^{-1}$ and $a^* = a^{-1}a$, where a^{\dagger} is the unique idempotent in the \mathcal{R}^* -class containing a and a^{-1} is the inverse of a .

- Graphs \Rightarrow Graph inverse semigroups
- Networks \Rightarrow Right $*$ -abundant semigroups
- Right ample semigroups
- Inverse semigroups

 \Box

Graphs \Rightarrow Graph inverse semigroups

Let $\Gamma=(\mathcal{V}, \mathcal{T}, \mathsf{s}, \mathsf{r})$ be a graph. For any $t \in \mathcal{T} \cup \mathcal{V}$, we define t^{-1} to be a relation with

$$
s(t^{-1}) = r(t) \text{ and } r(t^{-1}) = s(t).
$$

Notice that $v^{-1} = v$ for each $v \in V$. Put

$$
T^{-1} = \{t^{-1} : t \in T\}.
$$

Definition 6 Let $\Gamma = (V, T, s, r)$ be a graph. The graph inverse **semigroup** is given by the presentation $I_{\Gamma} := \langle X : R \rangle$ where

$$
X = T \cup V \cup T^{-1} \cup \{0\}
$$

and R consists of the following relations:

\n- (V)
$$
uv = \delta_{uv} u
$$
 for all $u, v \in V$;
\n- (E) $\mathbf{s}(t)t = t = tr(t)$ for each $t \in \mathcal{T} \cup \mathcal{T}^{-1}$;
\n- (CK1) $t_1^{-1} t_2 = \delta_{t_1 t_2} \mathbf{r}(t_1)$ for all $t_1, t_2 \in \mathcal{T}$;
\n- (O) $0x = 0 = x0$ for all $x \in X$;
\n

where δ is Kronecker Delta.

Graphs \Rightarrow Graph inverse semigroups

Let $\Gamma=(\mathcal{V}, \mathcal{T}, \mathsf{s}, \mathsf{r})$ be a graph. For any $t \in \mathcal{T} \cup \mathcal{V}$, we define t^{-1} to be a relation with

$$
s(t^{-1}) = r(t) \text{ and } r(t^{-1}) = s(t).
$$

Notice that $v^{-1} = v$ for each $v \in V$. Put

$$
\mathcal{T}^{-1} = \{t^{-1} : t \in \mathcal{T}\}.
$$

Definition 6 Let $\Gamma = (V, T, s, r)$ be a graph. The graph inverse semigroup is given by the presentation $I_{\Gamma} := \langle X : R \rangle$ where

$$
X = T \cup V \cup T^{-1} \cup \{0\}
$$

and R consists of the following relations:

(V)
$$
uv = \delta_{uv}u
$$
 for all $u, v \in V$;
\n(E) $\mathbf{s}(t)t = t = tr(t)$ for each $t \in T \cup T^{-1}$;
\n(CK1) $t_1^{-1}t_2 = \delta_{t_1t_2}\mathbf{r}(t_1)$ for all $t_1, t_2 \in T$;
\n(O) $0x = 0 = x0$ for all $x \in X$;
\nwhere δ is Kronecker Delta.

Let $\Gamma=(\mathcal{V}, \mathcal{T}, \mathbf{s}, \mathbf{r})$ be a network. For any $t \in \mathcal{T} \cup \mathcal{T}^0$, we define t^{-1} to be a relation with

$$
s(t^{-1}) = r(t) \text{ and } r(t^{-1}) = s(t).
$$

Notice that $A^{-1} = A$ for each $A \in \mathcal{T}^0$. Put

$$
\mathcal{T}^{-1} = \{t^{-1} : t \in \mathcal{T}\}.
$$

Definition 7 Let $\Gamma = (V, T, \mathbf{s}, \mathbf{r})$ be a network. The semigroup is given by the presentation $Q_{\Gamma} := \langle X : R \rangle$ where

 $X=\, \mathcal{T}\cup\,\mathcal{T}^0\cup\,\mathcal{T}^{-1}\cup\{0\}$

and R consists of the following relations: (NR1) $\mathbf{s}(t)t = t = t\mathbf{r}(t)$ for $t \in \mathcal{T} \cup \mathcal{T}^0 \cup \mathcal{T}^{-1}$; (NR2) $t_1 t_2 = 0$ if $\mathbf{r}(t_1) \cap \mathbf{s}(t_2) = \emptyset$ for $t_1, t_2 \in \mathcal{T} \cup \mathcal{T}^0 \cup \mathcal{T}^{-1}$; (NR3) $t_1^{-1}t_2 = 0$ if $t_1 \neq t_2$ for $t_1, t_2 \in \mathcal{T}$; (NR4) $t^{-1}t = \mathbf{r}(t)$ for $t \in \mathcal{T}$; (NR5) $t^{-1}A = 0$ if $\mathbf{s}(t) \neq A$ for $t \in \mathcal{T}$ and $A \in \mathcal{T}^0$; (NR6) $0x = 0 = x0$ for all $x \in X$.

Remark: for $A, B \in \mathcal{T}^0$ we regard AB as a path from A to B if $A \cap B \neq \emptyset$.

For any path $\alpha = t_1 t_2 \cdots t_n \in P(\Gamma) \setminus \{0\}$, we define

 $\alpha^{-1} = t_n^{-1} \cdots t_2^{-1} t_1^{-1}.$

Definition 7 Let $\Gamma = (V, T, \mathbf{s}, \mathbf{r})$ be a network. The semigroup is given by the presentation $Q_{\Gamma} := \langle X : R \rangle$ where

 $X=\, \mathcal{T}\cup\,\mathcal{T}^0\cup\,\mathcal{T}^{-1}\cup\{0\}$

and R consists of the following relations: (NR1) $\mathbf{s}(t)t = t = t\mathbf{r}(t)$ for $t \in \mathcal{T} \cup \mathcal{T}^0 \cup \mathcal{T}^{-1}$; (NR2) $t_1 t_2 = 0$ if $\mathbf{r}(t_1) \cap \mathbf{s}(t_2) = \emptyset$ for $t_1, t_2 \in \mathcal{T} \cup \mathcal{T}^0 \cup \mathcal{T}^{-1}$; (NR3) $t_1^{-1}t_2 = 0$ if $t_1 \neq t_2$ for $t_1, t_2 \in \mathcal{T}$; (NR4) $t^{-1}t = \mathbf{r}(t)$ for $t \in \mathcal{T}$; (NR5) $t^{-1}A = 0$ if $\mathbf{s}(t) \neq A$ for $t \in \mathcal{T}$ and $A \in \mathcal{T}^0$; (NR6) $0x = 0 = x0$ for all $x \in X$.

Remark: for $A, B \in \mathcal{T}^0$ we regard AB as a path from A to B if $A \cap B \neq \emptyset$.

For any path $\alpha = t_1 t_2 \cdots t_n \in P(\Gamma) \setminus \{0\}$, we define

 $\alpha^{-1} = t_n^{-1} \cdots t_2^{-1} t_1^{-1}.$

Definition 7 Let $\Gamma = (V, T, s, r)$ be a network. The semigroup is given by the presentation $Q_{\Gamma} := \langle X : R \rangle$ where

 $X=\, \mathcal{T}\cup\,\mathcal{T}^0\cup\,\mathcal{T}^{-1}\cup\{0\}$

and R consists of the following relations: (NR1) $\mathbf{s}(t)t = t = t\mathbf{r}(t)$ for $t \in \mathcal{T} \cup \mathcal{T}^0 \cup \mathcal{T}^{-1}$; (NR2) $t_1 t_2 = 0$ if $\mathbf{r}(t_1) \cap \mathbf{s}(t_2) = \emptyset$ for $t_1, t_2 \in \mathcal{T} \cup \mathcal{T}^0 \cup \mathcal{T}^{-1}$; (NR3) $t_1^{-1}t_2 = 0$ if $t_1 \neq t_2$ for $t_1, t_2 \in \mathcal{T}$; (NR4) $t^{-1}t = \mathbf{r}(t)$ for $t \in \mathcal{T}$; (NR5) $t^{-1}A = 0$ if $\mathbf{s}(t) \neq A$ for $t \in \mathcal{T}$ and $A \in \mathcal{T}^0$; (NR6) $0x = 0 = x0$ for all $x \in X$.

Remark: for $A, B \in \mathcal{T}^0$ we regard AB as a path from A to B if $A \cap B \neq \emptyset$.

For any path $\alpha = t_1 t_2 \cdots t_n \in P(\Gamma) \setminus \{0\}$, we define

$$
\alpha^{-1} = t_n^{-1} \cdots t_2^{-1} t_1^{-1}.
$$

 QQ

Proposition 1 The reduction system (X^+,\to) where $X=\mathcal{T}\cup \mathcal{T}^0\cup \mathcal{T}^{-1},$

$$
u \to v \Leftrightarrow (u = xu_i y, v = xv_i y \text{ for some } x, y \in X^*, (u_i, v_i) \in R)
$$

is a confluent rewriting system.

Outline of Proof: show the one-step case $(t_1t_2)t_3 = t_1(t_2t_3)$ for $t_1,t_2,t_3\in\mathcal{T}\cup\mathcal{T}^0\cup\mathcal{T}^{-1}$, that is, consider the situation

we must show in each case that there exists w with

Proposition 1 The reduction system (X^+,\to) where $X=\mathcal{T}\cup \mathcal{T}^0\cup \mathcal{T}^{-1},$

$$
u \to v \Leftrightarrow (u = xu_i y, v = xv_i y \text{ for some } x, y \in X^*, (u_i, v_i) \in R)
$$

is a confluent rewriting system.

Outline of Proof: show the one-step case $(t_1t_2)t_3 = t_1(t_2t_3)$ for $t_1,t_2,t_3\in\mathcal{T}\cup\mathcal{T}^0\cup\mathcal{T}^{-1}$, that is, consider the situation

we must show in each case that there exists w with

(NR1)
$$
\mathbf{s}(t)t = t = tr(t)
$$
 for $t \in \mathcal{T} \cup \mathcal{T}^0 \cup \mathcal{T}^{-1}$; (NR2) $t_1t_2 = 0$ if $\mathbf{r}(t_1) \cap \mathbf{s}(t_2) = \emptyset$ for $t_1, t_2 \in \mathcal{T} \cup \mathcal{T}^0 \cup \mathcal{T}^{-1}$; (NR3) $t_1^{-1}t_2 = 0$ if $t_1 \neq t_2$ for $t_1, t_2 \in \mathcal{T}$; (NR4) $t^{-1}t = \mathbf{r}(t)$ for $t \in \mathcal{T}$; (NR5) $t^{-1}A = 0$ if $\mathbf{s}(t) \neq A$ for $t \in \mathcal{T}$ and $A \in \mathcal{T}^0$; (NR6) $0x = 0 = x0$ for all $x \in X$.

Remark: If we set $AB = A \cap B$ then for $t \in \mathcal{T}$, $A \in \mathcal{T}^0$ and $\mathbf{r}(t^{-1}) \subsetneq A$, then we have

$$
t^{-1}\mathbf{r}(t^{-1})A = (t^{-1}\mathbf{r}(t^{-1}))A \to t^{-1}A \to 0
$$

by (NR1) and (NR5), and also we have

$$
t^{-1}\mathbf{r}(t^{-1})A = t^{-1}(\mathbf{r}(t^{-1})A) \to t^{-1}\mathbf{r}(t^{-1}) \to t^{-1}
$$

by $\mathbf{r}(t^{-1})A = \mathbf{r}(t^{-1}) \cap A = \mathbf{r}(t^{-1})$ and (NR1). Hence if we have $AB = A \cap B$ then the relation is not confluent[.](#page-29-0)

 QQ

(NR1)
$$
\mathbf{s}(t)t = t = tr(t)
$$
 for $t \in \mathcal{T} \cup \mathcal{T}^0 \cup \mathcal{T}^{-1}$; (NR2) $t_1t_2 = 0$ if $\mathbf{r}(t_1) \cap \mathbf{s}(t_2) = \emptyset$ for $t_1, t_2 \in \mathcal{T} \cup \mathcal{T}^0 \cup \mathcal{T}^{-1}$; (NR3) $t_1^{-1}t_2 = 0$ if $t_1 \neq t_2$ for $t_1, t_2 \in \mathcal{T}$; (NR4) $t^{-1}t = \mathbf{r}(t)$ for $t \in \mathcal{T}$; (NR5) $t^{-1}A = 0$ if $\mathbf{s}(t) \neq A$ for $t \in \mathcal{T}$ and $A \in \mathcal{T}^0$; (NR6) $0x = 0 = x0$ for all $x \in X$.

Remark: If we set $AB = A \cap B$ then for $t \in \mathcal{T}$, $A \in \mathcal{T}^0$ and $\mathbf{r}(t^{-1}) \subsetneq A$, then we have

$$
t^{-1}\mathbf{r}(t^{-1})A = (t^{-1}\mathbf{r}(t^{-1}))A \to t^{-1}A \to 0
$$

by (NR1) and (NR5), and also we have

$$
t^{-1}\mathbf{r}(t^{-1})A = t^{-1}(\mathbf{r}(t^{-1})A) \to t^{-1}\mathbf{r}(t^{-1}) \to t^{-1}
$$

by $\mathbf{r}(t^{-1})A = \mathbf{r}(t^{-1}) \cap A = \mathbf{r}(t^{-1})$ and (NR1). Hence if we have $AB = A \cap B$ then the relation is not confluent[.](#page-30-0)

 QQ

Certainly, the reduction system (X^+,\to) where $X=\mathcal{T}\cup \mathcal{T}^0\cup \mathcal{T}^{-1}$ is a noetherian rewriting system. Consequently, every element of Q_{Γ} has a unique normal form as a word in $X^{\rm +}.$

Definition 8 A path $\alpha = t_1 t_2 \ldots t_n$ is reduced (or irreducible) if

$$
t_{n-1} \neq \mathbf{s}(t_n), t_{i-1} \neq \mathbf{s}(t_i) \text{ and } t_{i+1} \neq \mathbf{r}(t_i)
$$

for $1 < i < n$, where $t_1, t_2, \ldots, t_n \in \mathcal{T} \cup \mathcal{T}^0$ and $n \in \mathbb{N}$.

Lemma 1 For any non-zero path $\alpha \in P(\Gamma)$, $\mathbf{s}(\alpha) = \mathbf{s}(\alpha')$ and $\mathbf{r}(\alpha) = \mathbf{r}(\alpha'),$ where α' is the unique reduced path such that $[\alpha] = [\alpha'].$

We put

$$
RP(\Gamma) = \{ \alpha \in P(\Gamma) : \alpha \text{ is reduced} \}
$$

 $RLP(\Gamma) = {\alpha \in LP(\Gamma) : \alpha \text{ is reduced}}$.

Certainly, the reduction system (X^+,\to) where $X=\mathcal{T}\cup \mathcal{T}^0\cup \mathcal{T}^{-1}$ is a noetherian rewriting system. Consequently, every element of Q_{Γ} has a unique normal form as a word in $X^{\rm +}.$

Definition 8 A path $\alpha = t_1 t_2 \ldots t_n$ is reduced (or irreducible) if

$$
t_{n-1} \neq \mathbf{s}(t_n), t_{i-1} \neq \mathbf{s}(t_i) \text{ and } t_{i+1} \neq \mathbf{r}(t_i)
$$

for $1 < i < n$, where $t_1, t_2, \ldots, t_n \in T \cup T^0$ and $n \in \mathbb{N}$.

Lemma 1 For any non-zero path $\alpha \in P(\Gamma)$, $\mathbf{s}(\alpha) = \mathbf{s}(\alpha')$ and $\mathbf{r}(\alpha) = \mathbf{r}(\alpha'),$ where α' is the unique reduced path such that $[\alpha] = [\alpha'].$

We put

$$
RP(\Gamma) = \{ \alpha \in P(\Gamma) : \alpha \text{ is reduced} \}
$$

 $RLP(\Gamma) = {\alpha \in LP(\Gamma) : \alpha \text{ is reduced}}.$

Certainly, the reduction system (X^+,\to) where $X=\mathcal{T}\cup \mathcal{T}^0\cup \mathcal{T}^{-1}$ is a noetherian rewriting system. Consequently, every element of Q_{Γ} has a unique normal form as a word in $X^{\rm +}.$

Definition 8 A path $\alpha = t_1 t_2 \ldots t_n$ is reduced (or irreducible) if

$$
t_{n-1} \neq \mathbf{s}(t_n), t_{i-1} \neq \mathbf{s}(t_i) \text{ and } t_{i+1} \neq \mathbf{r}(t_i)
$$

for $1 < i < n$, where $t_1, t_2, \ldots, t_n \in T \cup T^0$ and $n \in \mathbb{N}$.

Lemma 1 For any non-zero path $\alpha\in P(\Gamma)$, $\mathbf{s}(\alpha)=\mathbf{s}(\alpha')$ and $\mathbf{r}(\alpha)=\mathbf{r}(\alpha'),$ where α' is the unique reduced path such that $[\alpha] = [\alpha'].$

We put

$$
RP(\Gamma) = \{ \alpha \in P(\Gamma) : \alpha \text{ is reduced} \}
$$

 $RLP(\Gamma) = {\alpha \in LP(\Gamma) : \alpha \text{ is reduced}}.$

Certainly, the reduction system (X^+,\to) where $X=\mathcal{T}\cup \mathcal{T}^0\cup \mathcal{T}^{-1}$ is a noetherian rewriting system. Consequently, every element of Q_{Γ} has a unique normal form as a word in $X^{\rm +}.$

Definition 8 A path $\alpha = t_1 t_2 \ldots t_n$ is reduced (or irreducible) if

$$
t_{n-1} \neq \mathbf{s}(t_n), t_{i-1} \neq \mathbf{s}(t_i) \text{ and } t_{i+1} \neq \mathbf{r}(t_i)
$$

for $1 < i < n$, where $t_1, t_2, \ldots, t_n \in T \cup T^0$ and $n \in \mathbb{N}$.

Lemma 1 For any non-zero path $\alpha\in P(\Gamma)$, $\mathbf{s}(\alpha)=\mathbf{s}(\alpha')$ and $\mathbf{r}(\alpha)=\mathbf{r}(\alpha'),$ where α' is the unique reduced path such that $[\alpha] = [\alpha'].$

We put

$$
RP(\Gamma) = \{ \alpha \in P(\Gamma) : \alpha \text{ is reduced} \}
$$

and

$$
RLP(\Gamma) = \{ \alpha \in LP(\Gamma) : \alpha \text{ is reduced} \}.
$$
Networks ⇒ Right ∗-abundant semigroups

Theorem 1 Each element of $Q_Γ$ has a unique normal form of one of the following types:

(i) [α]; (ii) $[\beta^{-1}]$; (iii) $[\alpha \beta^{-1}]$ and (iv) [0],

where $\alpha \in RP(\Gamma)$, $\beta \in RLP(\Gamma)$ and in (iii) $\mathbf{r}(\alpha) \cap \mathbf{r}(\beta) \neq \emptyset$.

We will say that a word $w = \alpha \beta^{-1}$ with $\alpha \in RP(\Gamma)$, $\beta \in RLP(\Gamma)$ and $\mathbf{r}(\alpha) = \mathbf{r}(\beta)$ is a right normal form.

(i)
$$
[\alpha] = [\alpha \beta^{-1}]
$$
 where $\beta = \mathbf{r}(\alpha)$;
\n(ii) $[\beta^{-1}] = [\alpha \beta^{-1}]$ where $\alpha = \mathbf{r}(\beta)$;
\n(iii)
$$
\int_{[\alpha, \beta^{-1}] \text{ if } \mathbf{r}(\alpha) = \mathbf{r}(\beta)} d\alpha
$$

$$
[\alpha \beta^{-1}] = \begin{cases} [\alpha \beta^{-1}] & \text{if } \mathbf{r}(\alpha) = \mathbf{r}(\beta) \\ [\mu \beta^{-1}] & \text{otherwise,} \end{cases}
$$

where $\mu = \alpha r(\beta)$.

Networks ⇒ Right ∗-abundant semigroups

Theorem 1 Each element of $Q_Γ$ has a unique normal form of one of the following types:

(i) [α]; (ii) $[\beta^{-1}]$; (iii) $[\alpha \beta^{-1}]$ and (iv) [0],

where $\alpha \in RP(\Gamma)$, $\beta \in RLP(\Gamma)$ and in (iii) $\mathbf{r}(\alpha) \cap \mathbf{r}(\beta) \neq \emptyset$.

We will say that a word $w = \alpha \beta^{-1}$ with $\alpha \in RP(\Gamma)$, $\beta \in RLP(\Gamma)$ and $r(\alpha) = r(\beta)$ is a right normal form.

(i)
$$
[\alpha] = [\alpha \beta^{-1}]
$$
 where $\beta = \mathbf{r}(\alpha)$;
\n(ii) $[\beta^{-1}] = [\alpha \beta^{-1}]$ where $\alpha = \mathbf{r}(\beta)$;
\n(iii)
\n
$$
[\alpha \beta^{-1}] = \begin{cases} [\alpha \beta^{-1}] & \text{if } \mathbf{r}(\alpha) = \mathbf{r}(\beta) \\ \mathbf{r} & \text{if } \mathbf{r}(\alpha) = \mathbf{r}(\beta) \end{cases}
$$

where $\mu = \alpha r(\beta)$.

 $[\mu \beta^{-1}]$ otherwise,

 QQ

Corollary 1 Each non-zero element of Q_{Γ} has a unique right normal form representative $\alpha\beta^{-1}$, where $\alpha\in RP(\Gamma)$, $\beta\in RLP(\Gamma)$ and $\mathbf{r}(\alpha)=\mathbf{r}(\beta).$

Corollary 1 Each non-zero element of $Q_Γ$ has a unique right normal form representative $\alpha\beta^{-1}$, where $\alpha\in$ $RP(\Gamma)$, $\beta\in$ $RLP(\Gamma)$ and $\mathbf{r}(\alpha)=\mathbf{r}(\beta).$

Networks ⇒ Right ∗-abundant semigroups

Lemma 2 For any $[\alpha\beta^{-1}],[\mu\nu^{-1}]\in{\sf Q}_\Gamma$ with $\alpha\beta^{-1}$ and $\mu\nu^{-1}$ in right normal form, we have

$$
[\alpha\beta^{-1}][\mu\nu^{-1}] = \begin{cases} [\alpha\mu\nu^{-1}] & \text{if } \beta = \mathbf{r}(\alpha) \text{ and } \mathbf{r}(\alpha) \cap \mathbf{s}(\mu) \neq \emptyset \\ [\alpha\xi\nu^{-1}] & \text{if } \beta \in RLP(\Gamma) \setminus T^0, \mu = \beta\xi \text{ for } \xi \in RP(\Gamma) \\ [\alpha(\nu\eta)^{-1}] & \text{if } \beta \in RLP(\Gamma) \setminus T^0, \beta = \mu\eta \text{ for } \eta \in RP(\Gamma) \\ [0] & \text{otherwise.} \end{cases}
$$

Lemma 3 The idempotent set of Q_{Γ} is

$$
E(Q_{\Gamma}) = \{[\alpha \alpha^{-1}] : \alpha \in RLP(\Gamma)\} \cup \{[0]\},\
$$

which contains a subsemilattice

 $E = E(Q_{\Gamma}) \setminus \{ [A] : A \in \mathcal{T}^{0} \} = \{ [\alpha \alpha^{-1}] : \alpha \in RLP(\Gamma) \setminus \mathcal{T}^{0} \} \cup \{ 0 \}.$

Networks ⇒ Right ∗-abundant semigroups

Lemma 2 For any $[\alpha\beta^{-1}],[\mu\nu^{-1}]\in{\sf Q}_\Gamma$ with $\alpha\beta^{-1}$ and $\mu\nu^{-1}$ in right normal form, we have

$$
[\alpha\beta^{-1}][\mu\nu^{-1}] = \begin{cases} [\alpha\mu\nu^{-1}] & \text{if } \beta = \mathbf{r}(\alpha) \text{ and } \mathbf{r}(\alpha) \cap \mathbf{s}(\mu) \neq \emptyset \\ [\alpha\xi\nu^{-1}] & \text{if } \beta \in RLP(\Gamma) \setminus T^0, \mu = \beta\xi \text{ for } \xi \in RP(\Gamma) \\ [\alpha(\nu\eta)^{-1}] & \text{if } \beta \in RLP(\Gamma) \setminus T^0, \beta = \mu\eta \text{ for } \eta \in RP(\Gamma) \\ [0] & \text{otherwise.} \end{cases}
$$

Lemma 3 The idempotent set of Q_{Γ} is

$$
E(Q_{\Gamma}) = \{[\alpha\alpha^{-1}] : \alpha \in RLP(\Gamma)\} \cup \{[0]\},\
$$

which contains a subsemilattice

$$
E = E(Q_{\Gamma}) \setminus \{[A] : A \in \mathcal{T}^{0}\} = \{[\alpha \alpha^{-1}] : \alpha \in RLP(\Gamma) \setminus \mathcal{T}^{0}\} \cup \{0\}.
$$

Lemma 4 For any $[\alpha\beta^{-1}]\in{\sf Q}_{\sf \!{\Gamma}}\setminus\{[0]\}$ with $\alpha\beta^{-1}$ in right normal form, we have $[\alpha \beta^{-1}] \,\, \mathcal{L}^* \,\, [\beta \beta^{-1}].$

Lemma 5 Suppose that $[\alpha\beta^{-1}]$, $[\mu\nu^{-1}] \in \mathsf{Q}_{\mathsf{F}} \setminus \{[0]\}$ where $\alpha\beta^{-1}$ and $\mu\nu^{-1}$ are in right normal form.

(i) $[\alpha \beta^{-1}] \mathcal{L}^* [\mu \nu^{-1}]$ if and only if $\beta = \nu$;

(ii) if $\alpha, \mu \in RLP(\Gamma)$, then $[\alpha \beta^{-1}] \mathcal{R} [\mu \nu^{-1}]$ if and only if $\alpha = \mu$;

(iii) if $\alpha \in RLP(\Gamma)$ and $\mu \in RP(\Gamma) \backslash RLP(\Gamma)$, then $([\alpha \beta^{-1}], [\mu \nu^{-1}]) \notin \mathcal{R}^*$.

Theorem 2 The semigroup Q_{Γ} is a right *-abundant semigroup with a zero.

Lemma 4 For any $[\alpha\beta^{-1}]\in{\sf Q}_{\sf \!{\Gamma}}\setminus\{[0]\}$ with $\alpha\beta^{-1}$ in right normal form, we have $[\alpha \beta^{-1}] \,\, \mathcal{L}^* \,\, [\beta \beta^{-1}].$

Lemma 5 Suppose that $[\alpha\beta^{-1}]$, $[\mu\nu^{-1}] \in \mathsf{Q}_{\mathsf{F}} \setminus \{[0]\}$ where $\alpha\beta^{-1}$ and $\mu\nu^{-1}$ are in right normal form.

- (i) $[\alpha \beta^{-1}]$ \mathcal{L}^* $[\mu \nu^{-1}]$ if and only if $\beta = \nu$;
- (ii) if $\alpha, \mu \in RLP(\Gamma)$, then $[\alpha \beta^{-1}] \mathcal{R} [\mu \nu^{-1}]$ if and only if $\alpha = \mu$;
- (iii) if $\alpha \in RLP(\Gamma)$ and $\mu \in RP(\Gamma) \backslash RLP(\Gamma)$, then $([\alpha \beta^{-1}], [\mu \nu^{-1}]) \notin \mathcal{R}^*$.

Theorem 2 The semigroup Q_{Γ} is a right *-abundant semigroup with a zero.

 QQ

Lemma 4 For any $[\alpha\beta^{-1}]\in{\sf Q}_{\sf \!{\Gamma}}\setminus\{[0]\}$ with $\alpha\beta^{-1}$ in right normal form, we have $[\alpha \beta^{-1}] \,\, \mathcal{L}^* \,\, [\beta \beta^{-1}].$

Lemma 5 Suppose that $[\alpha\beta^{-1}]$, $[\mu\nu^{-1}] \in \mathsf{Q}_{\mathsf{F}} \setminus \{[0]\}$ where $\alpha\beta^{-1}$ and $\mu\nu^{-1}$ are in right normal form.

(i)
$$
[\alpha\beta^{-1}] \mathcal{L}^* [\mu\nu^{-1}]
$$
 if and only if $\beta = \nu$;

- (ii) if $\alpha, \mu \in RLP(\Gamma)$, then $[\alpha \beta^{-1}] \mathcal{R} [\mu \nu^{-1}]$ if and only if $\alpha = \mu$;
- (iii) if $\alpha \in RLP(\Gamma)$ and $\mu \in RP(\Gamma) \backslash RLP(\Gamma)$, then $([\alpha \beta^{-1}], [\mu \nu^{-1}]) \notin \mathcal{R}^*$.

Theorem 2 The semigroup Q_{Γ} is a right *-abundant semigroup with a zero.

Put $\mathcal{S}_{\Gamma} = \{[\alpha \beta^{-1}] \in Q_{\Gamma}: \alpha \in PR(\Gamma), \ \beta \in RLP(\Gamma) \setminus \mathcal{T}^0, \ \mathbf{r}(\alpha) = \mathbf{r}(\beta)\} \cup \{[0]\}.$ $[\alpha\beta^{-1}][\mu\nu^{-1}] =$ $\sqrt{ }$ \int $\overline{\mathcal{L}}$ $[\alpha \xi \nu^{-1}]$ if $\mu = \beta \xi$ for some $\xi \in RP(\Gamma)$ $[\alpha(\nu\eta)^{-1}]$ if $\beta = \mu\eta$ for some $\eta \in RP(\Gamma)$ [0] otherwise.

Clearly, the subsemilattice

 $E = E(Q_{\Gamma}) \setminus \{ [A] : A \in \mathcal{T}^0 \} = \{ [\alpha \alpha^{-1}] : \alpha \in RLP(\Gamma) \setminus \mathcal{T}^0 \} \cup \{ 0 \}$

is the set of all idempotents of S_{Γ} .

For all $[\xi \xi^{-1}] \in E$ and $[\alpha \beta^{-1}] \in S_\Gamma \setminus \{[0]\},$ $[\xi \xi^{-1}][\alpha \beta^{-1}] = [\alpha \beta^{-1}] ([\xi \xi^{-1}][\alpha \beta^{-1}])^*.$

Put $\mathcal{S}_{\Gamma} = \{[\alpha \beta^{-1}] \in Q_{\Gamma}: \alpha \in PR(\Gamma), \ \beta \in RLP(\Gamma) \setminus \mathcal{T}^0, \ \mathbf{r}(\alpha) = \mathbf{r}(\beta)\} \cup \{[0]\}.$ $[\alpha\beta^{-1}][\mu\nu^{-1}] =$ $\sqrt{ }$ \int $\overline{\mathcal{L}}$ $[\alpha \xi \nu^{-1}]$ if $\mu = \beta \xi$ for some $\xi \in RP(\Gamma)$ $[\alpha(\nu\eta)^{-1}]$ if $\beta = \mu\eta$ for some $\eta \in RP(\Gamma)$ [0] otherwise.

Clearly, the subsemilattice

 $\mathcal{E}=\mathcal{E}(\mathsf{Q}_{\Gamma})\setminus\{[A]:A\in\mathcal{T}^{0}\}=\{[\alpha\alpha^{-1}]:\alpha\in RLP(\Gamma)\setminus\mathcal{T}^{0}\}\cup\{0\}$

is the set of all idempotents of S_{Γ} .

For all $[\xi \xi^{-1}] \in E$ and $[\alpha \beta^{-1}] \in S_\Gamma \setminus \{[0]\},$ $[\xi \xi^{-1}][\alpha \beta^{-1}] = [\alpha \beta^{-1}] ([\xi \xi^{-1}][\alpha \beta^{-1}])^*.$

Put $\mathcal{S}_{\Gamma} = \{[\alpha \beta^{-1}] \in Q_{\Gamma}: \alpha \in PR(\Gamma), \ \beta \in RLP(\Gamma) \setminus \mathcal{T}^0, \ \mathbf{r}(\alpha) = \mathbf{r}(\beta)\} \cup \{[0]\}.$ $[\alpha\beta^{-1}][\mu\nu^{-1}] =$ $\sqrt{ }$ \int $\overline{\mathcal{L}}$ $[\alpha \xi \nu^{-1}]$ if $\mu = \beta \xi$ for some $\xi \in RP(\Gamma)$ $[\alpha(\nu\eta)^{-1}]$ if $\beta = \mu\eta$ for some $\eta \in RP(\Gamma)$ [0] otherwise.

Clearly, the subsemilattice

$$
E = E(Q_{\Gamma}) \setminus \{[A] : A \in \mathcal{T}^0\} = \{[\alpha \alpha^{-1}] : \alpha \in RLP(\Gamma) \setminus \mathcal{T}^0\} \cup \{0\}
$$

is the set of all idempotents of S_{Γ} .

For all
$$
[\xi \xi^{-1}] \in E
$$
 and $[\alpha \beta^{-1}] \in S_{\Gamma} \setminus \{[0]\},$
 $[\xi \xi^{-1}][\alpha \beta^{-1}] = [\alpha \beta^{-1}] ([\xi \xi^{-1}][\alpha \beta^{-1}])^*.$

Put $\mathcal{S}_{\Gamma} = \{[\alpha \beta^{-1}] \in Q_{\Gamma}: \alpha \in PR(\Gamma), \ \beta \in RLP(\Gamma) \setminus \mathcal{T}^0, \ \mathbf{r}(\alpha) = \mathbf{r}(\beta)\} \cup \{[0]\}.$ $[\alpha\beta^{-1}][\mu\nu^{-1}] =$ $\sqrt{ }$ \int $\overline{\mathcal{L}}$ $[\alpha \xi \nu^{-1}]$ if $\mu = \beta \xi$ for some $\xi \in RP(\Gamma)$ $[\alpha(\nu\eta)^{-1}]$ if $\beta = \mu\eta$ for some $\eta \in RP(\Gamma)$ [0] otherwise.

Clearly, the subsemilattice

$$
E = E(Q_{\Gamma}) \setminus \{[A] : A \in \mathcal{T}^0\} = \{[\alpha \alpha^{-1}] : \alpha \in RLP(\Gamma) \setminus \mathcal{T}^0\} \cup \{0\}
$$

is the set of all idempotents of S_{Γ} .

For all
$$
[\xi \xi^{-1}] \in E
$$
 and $[\alpha \beta^{-1}] \in S_{\Gamma} \setminus \{[0]\},$
 $[\xi \xi^{-1}][\alpha \beta^{-1}] = [\alpha \beta^{-1}] ([\xi \xi^{-1}][\alpha \beta^{-1}])^*.$

$$
\alpha,\beta\in\mathsf{RLP}(\mathsf{\Gamma})\text{ and }[\alpha\alpha^{-1}]\mathrel{\mathcal{R}}[\alpha\beta^{-1}]\mathrel{\mathcal{L}}[\beta\beta^{-1}],
$$

where $[\alpha\alpha^{-1}], [\beta\beta^{-1}] \in E(Q_\Gamma).$

Put

 $R_{\Gamma} = \{[\alpha \beta^{-1}] \in S_{\Gamma}: \alpha, \beta \in RLP(\Gamma) \setminus \mathcal{T}^0$ and $\mathbf{r}(\alpha) = \mathbf{r}(\beta)\} \cup \{[0]\}.$

Clearly, $R_{\Gamma} \subset S_{\Gamma}$ and

 $E(R_{\Gamma}) = E(S_{\Gamma}) = \{[\alpha \alpha^{-1}] : \alpha \in RLP(\Gamma) \setminus T^0\} \cup \{0\}.$

Corollary 2 The semigroup R_{Γ} is a fundamental inverse subsemigroup of SΓ.

$$
\alpha,\beta\in\mathsf{RLP}(\mathsf{\Gamma})\text{ and }[\alpha\alpha^{-1}]\mathrel{\mathcal{R}}[\alpha\beta^{-1}]\mathrel{\mathcal{L}}[\beta\beta^{-1}],
$$

where $[\alpha\alpha^{-1}], [\beta\beta^{-1}] \in E(Q_\Gamma).$

Put

$$
R_\Gamma=\{[\alpha\beta^{-1}]\in S_\Gamma:\alpha,\beta\in RLP(\Gamma)\setminus T^0\text{and }\mathbf{r}(\alpha)=\mathbf{r}(\beta)\}\cup\{[0]\}.
$$

Clearly, $R_{\Gamma} \subset S_{\Gamma}$ and

 $E(R_{\Gamma}) = E(S_{\Gamma}) = \{[\alpha \alpha^{-1}] : \alpha \in RLP(\Gamma) \setminus T^0\} \cup \{0\}.$

Corollary 2 The semigroup R_{Γ} is a fundamental inverse subsemigroup of SΓ.

$$
\alpha,\beta\in\mathsf{RLP}(\mathsf{\Gamma})\text{ and }[\alpha\alpha^{-1}]\mathrel{\mathcal{R}}[\alpha\beta^{-1}]\mathrel{\mathcal{L}}[\beta\beta^{-1}],
$$

where $[\alpha\alpha^{-1}], [\beta\beta^{-1}] \in E(Q_\Gamma).$

Put

$$
R_{\Gamma} = \{[\alpha \beta^{-1}] \in S_{\Gamma}: \alpha, \beta \in RLP(\Gamma) \setminus T^0 \text{and } \mathbf{r}(\alpha) = \mathbf{r}(\beta)\} \cup \{[0]\}.
$$

Clearly, $R_{\Gamma} \subset S_{\Gamma}$ and

 $E(R_{\Gamma}) = E(S_{\Gamma}) = \{[\alpha \alpha^{-1}] : \alpha \in RLP(\Gamma) \setminus T^0 \} \cup \{0\}.$

Corollary 2 The semigroup R_{Γ} is a fundamental inverse subsemigroup of SΓ.

$$
\alpha,\beta\in\mathsf{RLP}(\mathsf{\Gamma})\text{ and }[\alpha\alpha^{-1}]\mathrel{\mathcal{R}}[\alpha\beta^{-1}]\mathrel{\mathcal{L}}[\beta\beta^{-1}],
$$

where $[\alpha\alpha^{-1}], [\beta\beta^{-1}] \in E(Q_\Gamma).$

Put

$$
R_{\Gamma} = \{[\alpha \beta^{-1}] \in S_{\Gamma}: \alpha, \beta \in RLP(\Gamma) \setminus T^0 \text{and } \mathbf{r}(\alpha) = \mathbf{r}(\beta)\} \cup \{[0]\}.
$$

Clearly, $R_{\Gamma} \subset S_{\Gamma}$ and

$$
E(R_{\Gamma})=E(S_{\Gamma})=\{[\alpha\alpha^{-1}]:\alpha\in RLP(\Gamma)\setminus T^0\}\cup\{0\}.
$$

Corollary 2 The semigroup R_{Γ} is a fundamental inverse subsemigroup of SΓ.

A semigroup is said to be **congruence-free** if it has only two congruences, the identity congruence and the universal congruence.

A right ∗-abundant semigroup is said to be ∗-congruence-free if it has only two unary semigroup congruences, the identity congruence and the universal congruence.

A $*$ -ideal of a right abundant semigroup S is an ideal of S which is closed under the relation \mathcal{L}^* . It is easy to see that if we regard a right $*$ -abundant semigroup S as a unary semigroup and I is a proper $*$ -ideal of S then $\rho_I = (I \times I) \cup 1_S$ is a unary semigroup congruence on S.

A semigroup is said to be **congruence-free** if it has only two congruences, the identity congruence and the universal congruence.

A right ∗-abundant semigroup is said to be ∗-congruence-free if it has only two unary semigroup congruences, the identity congruence and the universal congruence.

A $*$ -ideal of a right abundant semigroup S is an ideal of S which is closed under the relation \mathcal{L}^* . It is easy to see that if we regard a right ∗-abundant semigroup S as a unary semigroup and I is a proper ∗-ideal of S then $\rho_I = (I \times I) \cup 1_S$ is a unary semigroup congruence on S.

A semigroup is said to be **congruence-free** if it has only two congruences, the identity congruence and the universal congruence.

A right ∗-abundant semigroup is said to be ∗-congruence-free if it has only two unary semigroup congruences, the identity congruence and the universal congruence.

A $*$ -ideal of a right abundant semigroup S is an ideal of S which is closed under the relation \mathcal{L}^* . It is easy to see that if we regard a right ∗-abundant semigroup S as a unary semigroup and I is a proper ∗-ideal of S then $\rho_I = (I \times I) \cup 1_S$ is a unary semigroup congruence on S.

Lemma 8 Let $I=\{[\alpha\beta^{-1}]\in S_\Gamma:\alpha\in RP(\Gamma)\setminus RLP(\Gamma)\}\cup\{[0]\}.$ Then I is a proper ideal of $S_{\Gamma}.$ Further $\rho_I = (I \times I) \cup 1_{S_{\Gamma}}$ is an idempotent separating congruence on S_{Γ} .

Q^Γ and S^Γ are never congruence-free if they have non-regular elements. Notice that if t is a relation in $\lceil \frac{w}{h} \rceil \cdot s(t) \rceil > 1$ and $v \in s(t)$, then we get $vt \in RP(\Gamma) \setminus RLP(\Gamma)$ and so $[vtt^{-1}] \in S_\Gamma \subseteq Q_\Gamma$ is a non-regular element.

Theorem 3 If $\Gamma = (V, T, s, r)$ is a network and there exists $t \in T$ with $| \mathbf{s}(t) | > 1$, then Q_{Γ} and S_{Γ} are not congruence-free as a semigroup.

 Ω

イロメ イ母メ イヨメ イヨ

Lemma 8 Let $I=\{[\alpha\beta^{-1}]\in S_\Gamma:\alpha\in RP(\Gamma)\setminus RLP(\Gamma)\}\cup\{[0]\}.$ Then I is a proper ideal of $S_{\Gamma}.$ Further $\rho_I = (I \times I) \cup 1_{S_{\Gamma}}$ is an idempotent separating congruence on S_{Γ} .

Q^Γ and S^Γ are never congruence-free if they have non-regular elements. Notice that if t is a relation in $\lceil \frac{w}{h} \rceil \cdot s(t) \rceil > 1$ and $v \in s(t)$, then we get $vt \in RP(\Gamma) \setminus RLP(\Gamma)$ and so $[vtt^{-1}] \in S_\Gamma \subseteq Q_\Gamma$ is a non-regular element.

Theorem 3 If $\Gamma = (V, T, s, r)$ is a network and there exists $t \in T$ with $| \mathbf{s}(t) | > 1$, then Q_{Γ} and S_{Γ} are not congruence-free as a semigroup.

 Ω

イロト イ押ト イヨト イヨト

Lemma 8 Let $I=\{[\alpha\beta^{-1}]\in S_\Gamma:\alpha\in RP(\Gamma)\setminus RLP(\Gamma)\}\cup\{[0]\}.$ Then I is a proper ideal of $S_{\Gamma}.$ Further $\rho_I = (I \times I) \cup 1_{S_{\Gamma}}$ is an idempotent separating congruence on S_{Γ} .

 $Q_Γ$ and $S_Γ$ are never congruence-free if they have non-regular elements. Notice that if t is a relation in Γ with $| \mathbf{s}(t) | > 1$ and $v \in \mathbf{s}(t)$, then we get $vt\in RP(\Gamma)\setminus RLP(\Gamma)$ and so $[vt^{-1}]\in S_\Gamma\subseteq Q_\Gamma$ is a non-regular element.

Theorem 3 If $\Gamma = (V, T, s, r)$ is a network and there exists $t \in T$ with $| \mathbf{s}(t) | > 1$, then Q_{Γ} and S_{Γ} are not congruence-free as a semigroup.

 Ω

イロメ イ部メ イ君メ イ君メー

Lemma 8 Let $I=\{[\alpha\beta^{-1}]\in S_\Gamma:\alpha\in RP(\Gamma)\setminus RLP(\Gamma)\}\cup\{[0]\}.$ Then I is a proper ideal of $S_{\Gamma}.$ Further $\rho_I = (I \times I) \cup 1_{S_{\Gamma}}$ is an idempotent separating congruence on S_{Γ} .

 $Q_Γ$ and $S_Γ$ are never congruence-free if they have non-regular elements. Notice that if t is a relation in Γ with $| \mathbf{s}(t) | > 1$ and $v \in \mathbf{s}(t)$, then we get $vt\in RP(\Gamma)\setminus RLP(\Gamma)$ and so $[vt^{-1}]\in S_\Gamma\subseteq Q_\Gamma$ is a non-regular element.

Theorem 3 If $\Gamma = (V, T, s, r)$ is a network and there exists $t \in T$ with $| \mathbf{s}(t) | > 1$, then Q_{Γ} and S_{Γ} are not congruence-free as a semigroup.

 QQ

イロメ イ何 メイヨメ イヨメーヨ

Q^Γ Congruence ∗-free

Let $\Gamma = (V, T, r, s)$ be a network. For each $A \subset V$ the cardinality of the set $\{t \in \mathcal{T} : \mathbf{s}(t) = A\}$ is called the *out-index* of A in Γ , denoted by $o(A)$.

Lemma 9 Let $\Gamma = (V, T, r, s)$ be a network and let $t \in T$ be such that $o(\mathsf{r}(t)) = 0$ and there does not exist $A \in \mathcal{T}^0 \setminus V$ with $\mathsf{r}(t) \subseteq A$. Then the principal ideal I generated by $[tt^{-1}]$ is a proper \ast -ideal of Q_Γ , where

 $I = Q_{\Gamma}[tt^{-1}]Q_{\Gamma}$ $=\{[\alpha\beta^{-1}]: \alpha \in RP(\Gamma), \beta \in RLP(\Gamma), \mathbf{r}(\alpha)=\mathbf{r}(\beta)=\mathbf{r}(t)\}\cup \{[0]\}.$

Theorem 4 If $\Gamma = (V, T, s, r)$ is a network and there exists $t \in T$ such that $o(\mathsf{r}(t))=0$ and there does not exist $A\in\mathcal{T}^0\setminus V$ with $\mathsf{r}(t)\subseteq A$, then Q_{Γ} is not $*$ -congruence-free as a unary semigroup.

Q^Γ Congruence ∗-free

Let $\Gamma = (V, T, r, s)$ be a network. For each $A \subset V$ the cardinality of the set $\{t \in \mathcal{T} : \mathbf{s}(t) = A\}$ is called the *out-index* of A in Γ , denoted by $o(A)$.

Lemma 9 Let $\Gamma = (V, T, r, s)$ be a network and let $t \in T$ be such that $o(\mathsf{r}(t)) = 0$ and there does not exist $A \in \mathcal{T}^0 \setminus V$ with $\mathsf{r}(t) \subseteq A$. Then the principal ideal I generated by $[tt^{-1}]$ is a proper \ast -ideal of Q_Γ , where

$$
I = Q_{\Gamma}[tt^{-1}]Q_{\Gamma}
$$

= { $\left[\alpha\beta^{-1}\right] : \alpha \in RP(\Gamma), \beta \in RLP(\Gamma), \mathbf{r}(\alpha) = \mathbf{r}(\beta) = \mathbf{r}(t)\right\} \cup \{[0]\}.$

Theorem 4 If $\Gamma = (V, T, s, r)$ is a network and there exists $t \in T$ such that $o(\mathsf{r}(t))=0$ and there does not exist $A\in\mathcal{T}^0\setminus V$ with $\mathsf{r}(t)\subseteq A$, then Q_{Γ} is not $*$ -congruence-free as a unary semigroup.

Q^Γ Congruence ∗-free

Let $\Gamma = (V, T, r, s)$ be a network. For each $A \subset V$ the cardinality of the set $\{t \in \mathcal{T} : \mathbf{s}(t) = A\}$ is called the *out-index* of A in Γ , denoted by $o(A)$.

Lemma 9 Let $\Gamma = (V, T, r, s)$ be a network and let $t \in T$ be such that $o(\mathsf{r}(t)) = 0$ and there does not exist $A \in \mathcal{T}^0 \setminus V$ with $\mathsf{r}(t) \subseteq A$. Then the principal ideal I generated by $[tt^{-1}]$ is a proper \ast -ideal of Q_Γ , where

$$
I = Q_{\Gamma}[tt^{-1}]Q_{\Gamma}
$$

= { $\left[\alpha\beta^{-1}\right] : \alpha \in RP(\Gamma), \beta \in RLP(\Gamma), \mathbf{r}(\alpha) = \mathbf{r}(\beta) = \mathbf{r}(t)\right\} \cup \{[0]\}.$

Theorem 4 If $\Gamma = (V, T, s, r)$ is a network and there exists $t \in T$ such that $o(\mathsf{r}(t))=0$ and there does not exist $A\in\mathcal{T}^0\setminus V$ with $\mathsf{r}(t)\subseteq A$, then Q_{Γ} is not $*$ -congruence-free as a unary semigroup.

 QQ

Lemma 10 Let $\Gamma = (V, T, r, s)$ be a network with $|T| > 1$ and let $t, q \in T$ be such that $o(\mathsf{r}(t)) = 0$, $\mathsf{r}(t) \neq \mathsf{r}(q)$ and there does not exist $A \in \mathcal{T}^0 \setminus \mathcal{V}$ with $\mathsf{r}(t) \subseteq \mathcal{A}$. Then the principal ideal generated by $[tt^{-1}]$ is a proper ∗-ideal of SΓ, where

$$
I = S_{\Gamma}^{1}[tt^{-1}]S_{\Gamma}^{1}
$$

= { $\left[\alpha\beta^{-1}\right] : \alpha \in RP(\Gamma), \beta \in RLP(\Gamma) \setminus T^{0}, \mathbf{r}(\alpha) = \mathbf{r}(\beta) = \mathbf{r}(t)\right\} \cup \left\{ [0] \right\}.$

Theorem 5 If $\Gamma = (V, T, r, s)$ is a network with $|T| > 1$ and let $t, q \in T$ be such that $o(\mathsf{r}(t)) = 0$, $\mathsf{r}(t) \neq \mathsf{r}(q)$ and there does not exist $A \in \mathcal{T}^0 \setminus \mathcal{V}$ with $r(t) \subseteq A$, then S_{Γ} is not *-congruence-free as a unary semigroup.

Lemma 10 Let $\Gamma = (V, T, r, s)$ be a network with $|T| > 1$ and let $t, q \in T$ be such that $o(\mathsf{r}(t)) = 0$, $\mathsf{r}(t) \neq \mathsf{r}(q)$ and there does not exist $A \in \mathcal{T}^0 \setminus \mathcal{V}$ with $\mathsf{r}(t) \subseteq \mathcal{A}$. Then the principal ideal generated by $[tt^{-1}]$ is a proper ∗-ideal of SΓ, where

$$
I = S_{\Gamma}^{1}[tt^{-1}]S_{\Gamma}^{1}
$$

= { $\left[\alpha\beta^{-1}\right]: \alpha \in RP(\Gamma), \beta \in RLP(\Gamma) \setminus T^{0}, \mathbf{r}(\alpha) = \mathbf{r}(\beta) = \mathbf{r}(t)\right\} \cup \left\{ [0]\right\}.$

Theorem 5 If $\Gamma = (V, T, r, s)$ is a network with $|T| > 1$ and let $t, q \in T$ be such that $o(\mathsf{r}(t)) = 0$, $\mathsf{r}(t) \neq \mathsf{r}(q)$ and there does not exist $A \in \mathcal{T}^0 \setminus \mathcal{V}$ with $r(t) \subseteq A$, then S_{Γ} is not *-congruence-free as a unary semigroup.

Lemma 11 Let $\Gamma = (V, T, r, s)$ be a network with $|T| > 1$ and let $t, q \in T$ be such that $o(\mathsf{r}(t)) = 0$, $\mathsf{r}(t) \neq \mathsf{r}(q)$ and there does not exist $A \in \mathcal{T}^0 \setminus \mathcal{V}$ with $\mathsf{r}(t) \subseteq \mathit{A}$. Then the principal ideal I generated by $[tt^{-1}]$ is a proper ideal of R_{Γ} , where

$$
I = R_{\Gamma}[tt^{-1}]R_{\Gamma}
$$

= { $\left[\alpha\beta^{-1}\right] : \alpha, \beta \in RLP(\Gamma) \setminus T^0, \mathbf{r}(\alpha) = \mathbf{r}(\beta) = \mathbf{r}(t)\right\} \cup \{[0]\}.$

Theorem 6 If $\Gamma = (V, T, r, s)$ is a network with $|T| > 1$ and let $t, q \in T$ be such that $o(\mathsf{r}(t)) = 0$, $\mathsf{r}(t) \neq \mathsf{r}(q)$ and there does not exist $A \in \mathcal{T}^0 \setminus \mathcal{V}$ with $\mathbf{r}(t) \subseteq A$, then R_{Γ} is not congruence-free.

Lemma 11 Let $\Gamma = (V, T, r, s)$ be a network with $|T| > 1$ and let $t, q \in T$ be such that $o(\mathsf{r}(t)) = 0$, $\mathsf{r}(t) \neq \mathsf{r}(q)$ and there does not exist $A \in \mathcal{T}^0 \setminus \mathcal{V}$ with $\mathsf{r}(t) \subseteq \mathit{A}$. Then the principal ideal I generated by $[tt^{-1}]$ is a proper ideal of R_{Γ} , where

$$
I = R_{\Gamma}[tt^{-1}]R_{\Gamma}
$$

= { $\left[\alpha\beta^{-1}\right] : \alpha, \beta \in RLP(\Gamma) \setminus T^0, \mathbf{r}(\alpha) = \mathbf{r}(\beta) = \mathbf{r}(t)\right\} \cup \{[0]\}.$

Theorem 6 If $\Gamma = (V, T, r, s)$ is a network with $|T| > 1$ and let $t, q \in T$ be such that $o(\mathsf{r}(t)) = 0$, $\mathsf{r}(t) \neq \mathsf{r}(q)$ and there does not exist $A \in \mathcal{T}^0 \setminus \mathcal{V}$ with $\mathbf{r}(t) \subseteq A$, then R_{Γ} is not congruence-free.

Let $\Gamma = (V, T)$ be a network as shown in the following, where

$$
V=\{v_1,v_2,v_3,v_4\} \text{ and } \mathcal{T}=\{t_1,t_2\},
$$

where $t_1 = (\{v_1, v_2\}, \{v_3\})$ and $t_2 = (\{v_3\}, \{v_4\}).$

We get

$$
\mathcal{T}^0 = \{A\} \cup V,
$$

where $A = \{v_1, v_2\}$.

Let
$$
X = \{v_1, v_2, A\}
$$
, where $A = \{v_1, v_2\}$,
\n $X_{v_1, v_2} = \{w \in X^+ : v_1v_1, v_2v_2, AA, v_1v_2 \text{ and } v_2v_1 \text{ are not subwords in } w\}$
\nand

$$
X_A = \{w \in X_{v_1,v_2} : w = \mu x, x \in X \setminus \{A\}\}.
$$

We have

$$
RP(\Gamma) = T \cup T^0 \cup X_{v_1, v_2} \cup X_A t_1 \cup X_A t_1 t_2 \cup \{t_1t_2\}
$$

and

$$
RLP(\Gamma) = T \cup T^0 \cup \{t_1t_2\}.
$$

B þ. \rightarrow 重

 299

$$
Q_{\Gamma} = \{[\alpha \mathbf{r}(\alpha)] : \alpha \in RP(\Gamma)\} \cup \{[\mathbf{r}(\beta)\beta^{-1}] : \beta \in RLP(\Gamma)\}
$$

\n
$$
\cup \{[\alpha\beta^{-1}] : \alpha, \beta \in RLP(\Gamma) \text{ and } \mathbf{r}(\alpha) = \mathbf{r}(\beta)\}
$$

\n
$$
\cup \{[\alpha t_1^{-1}] : \alpha \in X_A A \cup X_A t_1\}
$$

\n
$$
\cup \{[\alpha t_2^{-1}] : \alpha \in X_A t_1 t_2\} \cup \{[\alpha (t_1 t_2)^{-1}] : \alpha \in X_A t_1 t_2\} \cup \{[0]\},
$$

\n
$$
S_{\Gamma} = \{[\mathbf{r}(\beta)\beta^{-1}] : \beta \in RLP(\Gamma) \setminus T^0\}
$$

\n
$$
\cup \{[\alpha\beta^{-1}] : \alpha \in RLP(\Gamma), \beta \in RLP(\Gamma) \setminus T^0 \text{ and } \mathbf{r}(\alpha) = \mathbf{r}(\beta)\}
$$

$$
S_{\Gamma} = \{[\mathbf{r}(\beta)\beta^{-1}] : \beta \in RLP(\Gamma) \setminus T^0\}
$$

\n
$$
\cup \{[\alpha\beta^{-1}] : \alpha \in RLP(\Gamma), \beta \in RLP(\Gamma) \setminus T^0 \text{ and } \mathbf{r}(\alpha) = \mathbf{r}(\beta)\}
$$

\n
$$
\cup \{[\alpha t_1^{-1}] : \alpha \in X_A A \cup X_A t_1\}
$$

\n
$$
\cup \{[\alpha t_2^{-1}] : \alpha \in X_A t_1 t_2\} \cup \{[\alpha (t_1 t_2)^{-1}] : \alpha \in X_A t_1 t_2\} \cup \{[0]\},
$$

and

$$
R_{\Gamma} = \{ [\alpha \beta^{-1}] : \alpha, \beta \in RLP(\Gamma) \setminus T^0 \text{ and } \mathbf{r}(\alpha) = \mathbf{r}(\beta) \} \cup \{ [0] \}
$$

= \{ [t_1 t_1^{-1}], [t_2 t_2^{-1}], [t_1 t_2 t_2^{-1}], [t_1 t_2 (t_1 t_2)^{-1}], [0] \}.

 2990

Lemma 9 Let $\Gamma = (V, T, r, s)$ be a network and let $t \in T$ be such that $o(\mathsf{r}(t)) = 0$ and there does not exist $A \in \mathcal{T}^0 \setminus V$ with $\mathsf{r}(t) \subseteq A$. Then the principal ideal I generated by $[tt^{-1}]$ is a proper \ast -ideal of $Q_\Gamma.$

Set

$$
I_1 = Q_{\Gamma}[t_2 t_2^{-1}]Q_{\Gamma}
$$

\n
$$
= \{[\alpha \beta^{-1}] : \alpha \in RP(\Gamma), \beta \in RLP(\Gamma), \mathbf{r}(\alpha) = \mathbf{r}(\beta) = \mathbf{r}(t_2)\} \cup \{0\}
$$

\n
$$
= \{[\alpha \mathbf{r}(t_2)] : \alpha \in \{t_2, \mathbf{r}(t_2), t_1 t_2\} \cup X_A t_1 t_2\} \cup \{[\mathbf{r}(t_2) \beta^{-1}] : \beta \in \{t_2, t_1 t_2\}\}
$$

\n
$$
\cup \{[\alpha \beta^{-1}] : \alpha, \beta \in \{t_2, t_1 t_2\}\}
$$

\n
$$
\cup \{[\alpha t_2^{-1}] : \alpha \in X_A t_1 t_2\} \cup \{[\alpha(t_1 t_2)^{-1}] : \alpha \in X_A t_1 t_2\} \cup \{[0]\},
$$

Then I_1 is a proper $*$ -ideal of Q_{Γ} .

4 日下

∢ 何 ≯ →

画

 299
An example

Lemma 10 Let $\Gamma = (V, T, r, s)$ be a network with $|T| > 1$ and let $t, q \in T$ be such that $o(\mathsf{r}(t)) = 0$, $\mathsf{r}(t) \neq \mathsf{r}(q)$ and there does not exist $A \in \mathcal{T}^0 \setminus \mathcal{V}$ with $\mathsf{r}(t) \subseteq \mathcal{A}$. Then the principal ideal generated by $[tt^{-1}]$ is a proper ∗-ideal of SΓ.

Set

$$
I_2 = S_{\Gamma}^1[t_2t_2^{-1}]S_{\Gamma}^1
$$

= { $\{[\alpha\beta^{-1}] : \alpha \in RP(\Gamma), \beta \in RLP(\Gamma) \setminus T^0, \mathbf{r}(\alpha) = \mathbf{r}(\beta) = \mathbf{r}(t_2)\} \cup \{[0]\}$
= { $\{[\mathbf{r}(t_2)\beta^{-1}] : \beta \in \{t_2, t_1t_2\}\}$
 $\cup \{[\alpha\beta^{-1}] : \alpha, \beta \in \{t_2, t_1t_2\}\}$
 $\cup \{[\alpha t_2^{-1}] : \alpha \in X_A t_1 t_2\} \cup \{[\alpha(t_1 t_2)^{-1}] : \alpha \in X_A t_1 t_2\} \cup \{[0]\}$

Then I_2 is a proper *-ideal of S_{Γ} ;

4 0 8

∢ 何 ≯ →

画

Set

$$
I_3 = R_{\Gamma}[t_2t_2^{-1}]R_{\Gamma}
$$

= { $\left[\alpha\beta^{-1}\right]: \alpha, \beta \in RLP(\Gamma) \setminus T^0, \mathbf{r}(\alpha) = \mathbf{r}(\beta) = \mathbf{r}(t_2)\} \cup \{\left[0\right]\}$
= $\cup \{\left[\alpha\beta^{-1}\right]: \alpha, \beta \in \{t_2, t_1t_2\}\} \cup \{\left[0\right]\}.$

Then I_3 is a proper ideal of R_{Γ} .

4 0 8

 \leftarrow \leftarrow \leftarrow \leftarrow \leftarrow \leftarrow

≃

活

Homomorphisms

Definition 9 A **homomorphism** $\phi = (\phi_V, \phi_T)$ from $\Gamma = (V_\Gamma, T_\Gamma, \mathbf{s}, \mathbf{r})$ to $\Delta = (V_{\Delta}, T_{\Delta}, s, r)$ consists of two maps $\phi_V : V_{\Gamma} \to V_{\Delta}$ and ϕ _T : T_{Γ} \rightarrow T_{Λ} such that for all $t \in T_{\Gamma}$

$$
\mathbf{s}(t)\phi = \{v\phi_V : v \in \mathbf{s}(t)\} = \mathbf{s}(t\phi_\mathcal{T})
$$

and

$$
\mathbf{r}(t)\phi = \{v\phi_V : v \in \mathbf{r}(t)\} = \mathbf{r}(t\phi_\mathcal{T}).
$$

A mapping $\phi = (\phi_V, \phi_T)$ from $\Gamma = (V_F, T_F, s, r)$ to $\Delta = (V_A, T_A, s, r)$, is called **bijective** if ϕ_V and ϕ_T are bijective. A bijective homomorphism ϕ is an isomorphism.

Networks Γ and Δ are said to be **isomorphic** if there exists an isomorphism from Γ to Δ . If two networks Γ and Δ are isomorphic we write it as $\Gamma \cong \Delta$.

 Ω

Homomorphisms

Definition 9 A **homomorphism** $\phi = (\phi_V, \phi_T)$ from $\Gamma = (V_\Gamma, T_\Gamma, \mathbf{s}, \mathbf{r})$ to $\Delta = (V_{\Delta}, T_{\Delta}, s, r)$ consists of two maps $\phi_V : V_{\Gamma} \to V_{\Delta}$ and ϕ _T : T_{Γ} \rightarrow T_{Λ} such that for all $t \in T_{\Gamma}$

$$
\mathbf{s}(t)\phi = \{v\phi_V : v \in \mathbf{s}(t)\} = \mathbf{s}(t\phi_\mathcal{T})
$$

and

$$
\mathbf{r}(t)\phi = \{v\phi_V : v \in \mathbf{r}(t)\} = \mathbf{r}(t\phi_\mathcal{T}).
$$

A mapping $\phi = (\phi_V, \phi_T)$ from $\Gamma = (V_\Gamma, \mathcal{T}_\Gamma, \mathbf{s}, \mathbf{r})$ to $\Delta = (V_\Delta, \mathcal{T}_\Delta, \mathbf{s}, \mathbf{r})$, is called **bijective** if ϕ_V and ϕ_T are bijective. A bijective homomorphism ϕ is an isomorphism.

Networks Γ and Δ are said to be **isomorphic** if there exists an isomorphism from Γ to Δ . If two networks Γ and Δ are isomorphic we write it as $\Gamma \cong \Delta$.

 Ω

Homomorphisms

Definition 9 A **homomorphism** $\phi = (\phi_V, \phi_T)$ from $\Gamma = (V_\Gamma, T_\Gamma, \mathbf{s}, \mathbf{r})$ to $\Delta = (V_{\Delta}, T_{\Delta}, s, r)$ consists of two maps $\phi_V : V_{\Gamma} \to V_{\Delta}$ and ϕ _T : T_{Γ} \rightarrow T_{Λ} such that for all $t \in T_{\Gamma}$

$$
\mathbf{s}(t)\phi = \{v\phi_V : v \in \mathbf{s}(t)\} = \mathbf{s}(t\phi_\mathcal{T})
$$

and

$$
\mathbf{r}(t)\phi = \{v\phi_V : v \in \mathbf{r}(t)\} = \mathbf{r}(t\phi_\mathcal{T}).
$$

A mapping $\phi = (\phi_V, \phi_T)$ from $\Gamma = (V_\Gamma, \mathcal{T}_\Gamma, \mathbf{s}, \mathbf{r})$ to $\Delta = (V_\Delta, \mathcal{T}_\Delta, \mathbf{s}, \mathbf{r})$, is called **bijective** if ϕ_V and ϕ_T are bijective. A bijective homomorphism ϕ is an isomorphism.

Networks Γ and Δ are said to be **isomorphic** if there exists an isomorphism from Γ to Δ . If two networks Γ and Δ are isomorphic we write it as $\Gamma \cong \Delta$.

Let S be an semigroup with a set $E(S)$ of all idempotents. The relation \leq defined by for all $a, b \in S$,

$$
a \leq b \text{ if and only if } a = xb = by, xa = a
$$

for some $x,y\in S^1$, is a partial order on S called the $\mathsf{natural}$ $\mathsf{partial}$ order of S [\[5\]](#page-82-0). When the natural partial order is restricted to the set $E(S)$ it is as follows: for all $e, f \in E(S)$,

 $e \leq f$ if and only if $e = ef = fe$.

Further, $E(S)$ is a partially ordered set with respect to \leq . In particular, if $E(S)$ is a semilattice, for all $e, f \in E$,

$$
e \leq f
$$
 if and only if $e = ef$.

Lemma 12 Let $E(Q_{\Gamma})$ be the set of all idempotents of Q_{Γ} and let \leq be the natural partial order on Q_{Γ} defined above. Then the following statements hold.

- ${\rm (i)}$ An idempotent $[\alpha\alpha^{-1}]$ is maximal in $E(Q_\Gamma)$ with respect to \leq if and only if $\alpha \in \mathcal{T}^0$;
- (ii) An idempotent $[\alpha \alpha^{-1}]$ is maximal in $E = E(Q_{\Gamma}) \setminus \{[A] : A \in \mathcal{T}^0\}$ with respect to \leq if and only if $\alpha \in \mathcal{T}$.

Theorem 7 Let $\Gamma = (V_{\Gamma}, T_{\Gamma}, s, r)$ and $\Delta = (V_{\Delta}, T_{\Delta}, s, r)$ be two networks. Then $\Gamma \cong \Delta$ if and only if $Q_{\Gamma} \cong Q_{\Delta}$.

 Ω

Lemma 12 Let $E(Q_{\Gamma})$ be the set of all idempotents of Q_{Γ} and let \leq be the natural partial order on Q_{Γ} defined above. Then the following statements hold.

- ${\rm (i)}$ An idempotent $[\alpha\alpha^{-1}]$ is maximal in $E(Q_\Gamma)$ with respect to \leq if and only if $\alpha \in \mathcal{T}^0$;
- (ii) An idempotent $[\alpha \alpha^{-1}]$ is maximal in $E = E(Q_{\Gamma}) \setminus \{[A] : A \in \mathcal{T}^0\}$ with respect to \leq if and only if $\alpha \in \mathcal{T}$.

Theorem 7 Let $\Gamma = (V_{\Gamma}, T_{\Gamma}, s, r)$ and $\Delta = (V_{\Delta}, T_{\Delta}, s, r)$ be two networks. Then $\Gamma \cong \Delta$ if and only if $Q_{\Gamma} \cong Q_{\Delta}$.

References

- Abrams, G., Aranda Pino, G.: The Leavitt path algebra of a graph. J Algebra 293 319-334 (2005)
- \Box Ara, P., Moreno, M. A., Pardo, E.: Nonstable K-theory for graph algebras. Algebr Represent Theory, 10 157-178 (2007)
- F. Ash, C. J., Hall, T. E.: Inverse semigroups on graphs. Semigroup Forum 11 140-145 (1975)
- Bianconi, G.: Higher-Order Networks: An Introduction to Simplicial Complex. Cambridge University Press, 2022
- Bowers, P. M., Cokus, S. J., Eisenberg, D., et al. Use of Logic Relationships to Decipher Protein Network Organization. Science 306 2246-2249 (2004)
- Baird, G.R.: Congruence-free inverse semigroups with zero. J. Austral. Math. Soc. 20 (Series A) 110-114 (1975).

Book, R. V., Otto, F.: String-Rewriting Sys[te](#page-80-0)[ms](#page-82-1)[,](#page-80-0) [Sp](#page-81-0)[r](#page-82-1)[ing](#page-0-0)[er](#page-82-1)[, 1](#page-0-0)[99](#page-82-1)[3.](#page-0-0) QQ Network right ∗[-abundant semigroups](#page-0-0) 27th Nov. 2024 40 / 41

References

- Fountain, J. B.: Adequate semigroups. Proceeding of the Edinburgh Mathematical Society 22(2) 113-125 (1979)
- Fountain, J. B.: Abundant semigroups. Proc Lond Math Soc 44 103-129 (1982)
- Fountain, J. B.: Free right h-adequate semigroups. Semigroups, theory and applications, Lecture Notes in Mathematics 1320, 97-120 (1988)
- Howie, J. M.: An Introduction to Semigroup Theory. Academic Press, London (1976)
- H. Mitsch.: A natural partial order for semigroups. Proceedings of the American Mathematical Society 97(3) 384-388 (1980)
- W. D. Munn.: Fundamental inverse semigroups. Quart J Math Oxford 21 157-170 (1970)

