Network right *-abundant semigroups

Yanhui Wang

York Seminar

(Yanhui Wang)

Network right *-abundant semigroups

27th Nov. 2024 1 / 41

- Preliminaries: networks
- Background & Questions
- Preliminaries: right * abundant semigroups
- Constructions
- Congruence-free
- Homomorphisms

Preliminaries: networks

Definition 1 A **network** $\Gamma = (V, T, \mathbf{s}, \mathbf{r})$ consists of the set of vertices V, the set of relations T, together with mappings $\mathbf{s}, \mathbf{r} : T \to \mathcal{P}(V)$, respectively called the *source mapping* and the *range mapping* for Γ , where $\mathcal{P}(V)$ is the power set of V and for all $t \in T$, $\mathbf{s}(t)$ and $\mathbf{r}(t)$ are disjoint non-empty subsets of V.

Let $\Gamma = (V, T, \mathbf{s}, \mathbf{r})$ be a network. Put

 $T^{0} = \{A \subseteq V : \exists t \in T, A = \mathbf{s}(t) \text{ or } A = \mathbf{r}(t)\} \cup V,$

and for all $A \in T^0$, $\mathbf{s}(A) = \mathbf{r}(A) = A$.

Definition 2 A path in a network $\Gamma = (V, T, \mathbf{s}, \mathbf{r})$ is a finite sequence $\alpha = t_1 t_2 \cdots t_n$ of elements of $T \cup T^0$ such that $\mathbf{r}(t_i) \cap \mathbf{s}(t_{i+1}) \neq \emptyset$ for $i = 1, 2, \cdots, n-1$. In such a case, $\mathbf{s}(\alpha) = \mathbf{s}(t_1)$ is the source of α , $\mathbf{r}(\alpha) = \mathbf{r}(t_n)$ is the range of α .

An element in T^0 is said to be an **empty path**.

Let $\Gamma = (V, T, \mathbf{s}, \mathbf{r})$ be a network. Put $T^0 = \{A \subset V : \exists t \in T, A = \mathbf{s}(t) \text{ or } A = \mathbf{r}(t)\} \cup V,$

and for all $A \in T^0$, $\mathbf{s}(A) = \mathbf{r}(A) = A$.

Definition 2 A **path** in a network $\Gamma = (V, T, \mathbf{s}, \mathbf{r})$ is a finite sequence $\alpha = t_1 t_2 \cdots t_n$ of elements of $T \cup T^0$ such that $\mathbf{r}(t_i) \cap \mathbf{s}(t_{i+1}) \neq \emptyset$ for $i = 1, 2, \cdots, n-1$. In such a case, $\mathbf{s}(\alpha) = \mathbf{s}(t_1)$ is the *source* of α , $\mathbf{r}(\alpha) = \mathbf{r}(t_n)$ is the *range* of α .

An element in T^0 is said to be an **empty path**.

・ 何 ト ・ ヨ ト ・ ヨ ト

Let $\Gamma = (V, T, \mathbf{s}, \mathbf{r})$ be a network. Put $T^0 = \{A \subseteq V : \exists t \in T, A = \mathbf{s}(t) \text{ or } A = \mathbf{r}(t)\} \cup V,$ and for all $A \in T^0$, $\mathbf{s}(A) = \mathbf{r}(A) = A.$ Definition 2 A path in a network $\Gamma = (V, T, \mathbf{s}, \mathbf{r})$ is a finite sequence $\alpha = t_1 t_2 \cdots t_n$ of elements of $T \cup T^0$ such that $\mathbf{r}(t_i) \cap \mathbf{s}(t_{i+1}) \neq \emptyset$ for $i = 1, 2, \cdots, n-1$. In such a case, $\mathbf{s}(\alpha) = \mathbf{s}(t_1)$ is the *source* of α ,

 $\mathbf{r}(\alpha) = \mathbf{r}(t_n)$ is the *range* of α .

An element in T^0 is said to be an **empty path**.

- (個) - (日) - (日) - (日)

Let $\Gamma = (V, T, \mathbf{s}, \mathbf{r})$ be a network. Put $T^0 = \{A \subseteq V : \exists t \in T, A = \mathbf{s}(t) \text{ or } A = \mathbf{r}(t)\} \cup V,$ and for all $A \in T^0$, $\mathbf{s}(A) = \mathbf{r}(A) = A.$ Definition 2 A path in a network $\Gamma = (V, T, \mathbf{s}, \mathbf{r})$ is a finite sequence $\alpha = t_1 t_2 \cdots t_n$ of elements of $T \cup T^0$ such that $\mathbf{r}(t_i) \cap \mathbf{s}(t_{i+1}) \neq \emptyset$ for $i = 1, 2, \cdots, n-1$. In such a case, $\mathbf{s}(\alpha) = \mathbf{s}(t_1)$ is the source of α ,

 $\mathbf{r}(\alpha) = \mathbf{r}(t_n)$ is the *range* of α .

An element in T^0 is said to be an **empty path**.

くぼう くほう くほう しほ

Let $P(\Gamma)$ denote the set of all paths in a network Γ . This includes the zero-element 0 and T^0 .

$$P(\Gamma) = \{t_1 \cdots t_n : t_i \in T \cup T^0, \mathbf{r}(t_i) \cap \mathbf{s}(t_{i+1}) \neq \emptyset \text{ for } i = 1, \cdots, n-1\}$$
$$\cup \{0\}$$

Definition 3 If $\mathbf{r}(t_i) = \mathbf{s}(t_{i+1})$ for $i = 1, \dots, n-1$ in $\alpha = t_1 \dots t_n \in P(\Gamma)$, then α is said to be a **linear path**.

Let $LP(\Gamma)$ denote the set of all linear paths in Γ . This includes T^0 but does not contain the zero element 0.

$$LP(\Gamma) = \{t_1 \cdots t_n \in P(\Gamma) \setminus \{0\} : \mathbf{r}(t_i) = \mathbf{s}(t_{i+1}) \text{ for } i = 1, \cdots, n-1\}.$$

Let $P(\Gamma)$ denote the set of all paths in a network Γ . This includes the zero-element 0 and T^0 .

$$P(\Gamma) = \{t_1 \cdots t_n : t_i \in T \cup T^0, \mathbf{r}(t_i) \cap \mathbf{s}(t_{i+1}) \neq \emptyset \text{ for } i = 1, \cdots, n-1\}$$
$$\cup \{0\}$$

Definition 3 If $\mathbf{r}(t_i) = \mathbf{s}(t_{i+1})$ for $i = 1, \dots, n-1$ in $\alpha = t_1 \dots t_n \in P(\Gamma)$, then α is said to be a **linear path**.

Let $LP(\Gamma)$ denote the set of all linear paths in Γ . This includes T^0 but does not contain the zero element 0.

$$LP(\Gamma) = \{t_1 \cdots t_n \in P(\Gamma) \setminus \{0\} : \mathbf{r}(t_i) = \mathbf{s}(t_{i+1}) \text{ for } i = 1, \cdots, n-1\}.$$

Let $P(\Gamma)$ denote the set of all paths in a network Γ . This includes the zero-element 0 and T^0 .

$$P(\Gamma) = \{t_1 \cdots t_n : t_i \in T \cup T^0, \mathbf{r}(t_i) \cap \mathbf{s}(t_{i+1}) \neq \emptyset \text{ for } i = 1, \cdots, n-1\}$$
$$\cup \{0\}$$

Definition 3 If $\mathbf{r}(t_i) = \mathbf{s}(t_{i+1})$ for $i = 1, \dots, n-1$ in $\alpha = t_1 \dots t_n \in P(\Gamma)$, then α is said to be a **linear path**.

Let $LP(\Gamma)$ denote the set of all linear paths in Γ . This includes T^0 but does not contain the zero element 0.

$$LP(\Gamma) = \{t_1 \cdots t_n \in P(\Gamma) \setminus \{0\} : \mathbf{r}(t_i) = \mathbf{s}(t_{i+1}) \text{ for } i = 1, \cdots, n-1\}.$$

Background

- Let $\Gamma = (V, T, \mathbf{s}, \mathbf{r})$ be a graph.
 - 1962, Leavitt path algebra —Leavitt, W. G.
 - 2 1975, Graph inverse semigroups —Ash, C. J. and Hall, T. E.
 - 1998, Cuntz-Krieger graph C*-algebras —Kumjian, A., Pask, D. and Raeburn, I.

(4) . . .

Questions There exists a kind of paths $p = t_1 t_2 \cdots t_n$ of relations $t_i \in T_{\Gamma}$ with either $\mathbf{r}(t_i) = \mathbf{s}(t_{i+1})$ or $\mathbf{r}(t_i) \neq \mathbf{s}(t_{i+1})$ but $\mathbf{r}(t_i) \cap \mathbf{s}(t_{i+1}) \neq \emptyset$ for $i = 1, \ldots, n-1$ in a network. Naturally, one may ask what kind of algebraic systems such paths may lead to?

Background

Let $\Gamma = (V, T, \mathbf{s}, \mathbf{r})$ be a graph.

- 1962, Leavitt path algebra —Leavitt, W. G.
- 2 1975, Graph inverse semigroups Ash, C. J. and Hall, T. E.
- 1998, Cuntz-Krieger graph C*-algebras —Kumjian, A., Pask, D. and Raeburn, I.

Questions There exists a kind of paths $p = t_1 t_2 \cdots t_n$ of relations $t_i \in T_{\Gamma}$ with either $\mathbf{r}(t_i) = \mathbf{s}(t_{i+1})$ or $\mathbf{r}(t_i) \neq \mathbf{s}(t_{i+1})$ but $\mathbf{r}(t_i) \cap \mathbf{s}(t_{i+1}) \neq \emptyset$ for $i = 1, \ldots, n-1$ in a network. Naturally, one may ask what kind of algebraic systems such paths may lead to?

伺下 イヨト イヨト

^{4 . . .}

- Green's star relations
- Right *-abundant semigroups
- Right ample semigroups

Let S be a semigroup. For all $a, b \in S$,

$$a\mathcal{L}^*b \Leftrightarrow orall x, y \in S^1(ax = ay \Leftrightarrow bx = by)$$

and

$$a\mathcal{R}^*b \Leftrightarrow \forall x, y \in S^1(xa = ya \Leftrightarrow xb = yb).$$

Notice that $\mathcal{L} \subseteq \mathcal{L}^*$ and $\mathcal{R} \subseteq \mathcal{R}^*$ on any semigroup S. For any regular elements $a, b \in S$, $(a, b) \in \mathcal{L}^*$ if and only if $(a, b) \in \mathcal{L}$ and $(a, b) \in \mathcal{R}^*$ if and only if $(a, b) \in \mathcal{R}$. In particular, if S is a regular semigroup, then $\mathcal{L}^* = \mathcal{L}$ and $\mathcal{R}^* = \mathcal{R}$.

Let S be a semigroup. For all $a, b \in S$,

$$\mathsf{a}\mathcal{L}^*b \Leftrightarrow orall x, y \in \mathcal{S}^1ig(\mathsf{a} x = \mathsf{a} y \Leftrightarrow \mathsf{b} x = \mathsf{b} yig)$$

and

$$a\mathcal{R}^*b \Leftrightarrow \forall x, y \in S^1(xa = ya \Leftrightarrow xb = yb).$$

Notice that $\mathcal{L} \subseteq \mathcal{L}^*$ and $\mathcal{R} \subseteq \mathcal{R}^*$ on any semigroup S. For any regular elements $a, b \in S$, $(a, b) \in \mathcal{L}^*$ if and only if $(a, b) \in \mathcal{L}$ and $(a, b) \in \mathcal{R}^*$ if and only if $(a, b) \in \mathcal{R}$. In particular, if S is a regular semigroup, then $\mathcal{L}^* = \mathcal{L}$ and $\mathcal{R}^* = \mathcal{R}$.

Definition 4 A right abundant semigroup S is said to be a **right** *-**abundant** semigroup if each \mathcal{L}^* -class of S contains a unique idempotent.

Let S be a right *-abundant semigroup with set of idempotents E(S). We denote the unique idempotent of E(S) in the \mathcal{L}^* -class of a by a^* .

Then * is a unary operation on a right *-abundant semigroup S and we may regard S as an algebra of type (2,1) and call such algebras **unary algebras**; as such, morphisms must preserve the unary operation of * (and hence the relation \mathcal{L}^*). Of course, any semigroup isomorphism must preserve the additional operations.

Definition 4 A right abundant semigroup S is said to be a **right** *-**abundant** semigroup if each \mathcal{L}^* -class of S contains a unique idempotent.

Let S be a right *-abundant semigroup with set of idempotents E(S). We denote the unique idempotent of E(S) in the \mathcal{L}^* -class of a by a^* .

Then * is a unary operation on a right *-abundant semigroup S and we may regard S as an algebra of type (2,1) and call such algebras **unary algebras**; as such, morphisms must preserve the unary operation of * (and hence the relation \mathcal{L}^*). Of course, any semigroup isomorphism must preserve the additional operations.

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Definition 4 A right abundant semigroup S is said to be a **right** *-**abundant** semigroup if each \mathcal{L}^* -class of S contains a unique idempotent.

Let S be a right *-abundant semigroup with set of idempotents E(S). We denote the unique idempotent of E(S) in the \mathcal{L}^* -class of a by a^* .

Then * is a unary operation on a right *-abundant semigroup S and we may regard S as an algebra of type (2,1) and call such algebras **unary algebras**; as such, morphisms must preserve the unary operation of * (and hence the relation \mathcal{L}^*). Of course, any semigroup isomorphism must preserve the additional operations.

A = A = A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Definition 4 A right abundant semigroup S is said to be a **right** *-**abundant** semigroup if each \mathcal{L}^* -class of S contains a unique idempotent.

Let S be a right *-abundant semigroup with set of idempotents E(S). We denote the unique idempotent of E(S) in the \mathcal{L}^* -class of a by a^* .

Then * is a unary operation on a right *-abundant semigroup S and we may regard S as an algebra of type (2, 1) and call such algebras **unary algebras**; as such, morphisms must preserve the unary operation of * (and hence the relation \mathcal{L}^*). Of course, any semigroup isomorphism must preserve the additional operations.

Definition 5 A **right ample** semigroup is defined to be a semigroup such that

- (i) each \mathcal{L}^* -class contains an idempotent;
- (ii) the idempotents commute;

(iii) $ea = a(ea)^*$ for any element a in S and any idempotent e in S.

Dually, a **left ample** semigroup is defined. An **ample** semigroup is defined to be a left and right ample semigroup.

In particular, an inverse semigroup is ample, where $a^{\dagger} = aa^{-1}$ and $a^* = a^{-1}a$, where a^{\dagger} is the unique idempotent in the \mathcal{R}^* -class containing a and a^{-1} is the inverse of a.

Definition 5 A **right ample** semigroup is defined to be a semigroup such that

- (i) each \mathcal{L}^* -class contains an idempotent;
- (ii) the idempotents commute;

(iii) $ea = a(ea)^*$ for any element a in S and any idempotent e in S.

Dually, a **left ample** semigroup is defined. An **ample** semigroup is defined to be a left and right ample semigroup.

In particular, an inverse semigroup is ample, where $a^{\dagger} = aa^{-1}$ and $a^* = a^{-1}a$, where a^{\dagger} is the unique idempotent in the \mathcal{R}^* -class containing a and a^{-1} is the inverse of a.

- Graphs \Rightarrow Graph inverse semigroups
- Networks \Rightarrow Right *-abundant semigroups
- Right ample semigroups
- Inverse semigroups

$Graphs \Rightarrow Graph inverse semigroups$

Let $\Gamma = (V, T, \mathbf{s}, \mathbf{r})$ be a graph. For any $t \in T \cup V$, we define t^{-1} to be a relation with

$$\mathbf{s}(t^{-1}) = \mathbf{r}(t)$$
 and $\mathbf{r}(t^{-1}) = \mathbf{s}(t)$.

Notice that $v^{-1} = v$ for each $v \in V$. Put

$$T^{-1} = \{t^{-1} : t \in T\}.$$

Definition 6 Let $\Gamma = (V, T, \mathbf{s}, \mathbf{r})$ be a graph. The **graph inverse** semigroup is given by the presentation $I_{\Gamma} := \langle X : R \rangle$ where

$$X = T \cup V \cup T^{-1} \cup \{0\}$$

and *R* consists of the following relations:

(V)
$$uv = \delta_{uv}u$$
 for all $u, v \in V$;
(E) $\mathbf{s}(t)t = t = t\mathbf{r}(t)$ for each $t \in T \cup T^{-1}$
(CK1) $t_1^{-1}t_2 = \delta_{t_1t_2}\mathbf{r}(t_1)$ for all $t_1, t_2 \in T$;

 $(O) 0x = 0 = x0 \text{ for all } x \in X;$

where δ is Kronecker Delta.

$Graphs \Rightarrow Graph inverse semigroups$

Let $\Gamma = (V, T, \mathbf{s}, \mathbf{r})$ be a graph. For any $t \in T \cup V$, we define t^{-1} to be a relation with

$$\mathbf{s}(t^{-1}) = \mathbf{r}(t)$$
 and $\mathbf{r}(t^{-1}) = \mathbf{s}(t)$.

Notice that $v^{-1} = v$ for each $v \in V$. Put

$$T^{-1} = \{t^{-1} : t \in T\}.$$

Definition 6 Let $\Gamma = (V, T, \mathbf{s}, \mathbf{r})$ be a graph. The graph inverse semigroup is given by the presentation $I_{\Gamma} := \langle X : R \rangle$ where

$$X = T \cup V \cup T^{-1} \cup \{0\}$$

and R consists of the following relations:

(V)
$$uv = \delta_{uv}u$$
 for all $u, v \in V$;
(E) $\mathbf{s}(t)t = t = t\mathbf{r}(t)$ for each $t \in T \cup T^{-1}$;
(CK1) $t_1^{-1}t_2 = \delta_{t_1t_2}\mathbf{r}(t_1)$ for all $t_1, t_2 \in T$;
(O) $0x = 0 = x0$ for all $x \in X$;
where δ is Kronecker Delta.

Let $\Gamma = (V, T, \mathbf{s}, \mathbf{r})$ be a network. For any $t \in T \cup T^0$, we define t^{-1} to be a relation with

$$\mathbf{s}(t^{-1}) = \mathbf{r}(t)$$
 and $\mathbf{r}(t^{-1}) = \mathbf{s}(t).$

Notice that $A^{-1} = A$ for each $A \in T^0$. Put

$$T^{-1} = \{t^{-1} : t \in T\}.$$

Definition 7 Let $\Gamma = (V, T, \mathbf{s}, \mathbf{r})$ be a network. The semigroup is given by the presentation $Q_{\Gamma} := \langle X : R \rangle$ where

 $X = T \cup T^0 \cup T^{-1} \cup \{0\}$

and *R* consists of the following relations: (NR1) $\mathbf{s}(t)t = t = t\mathbf{r}(t)$ for $t \in T \cup T^0 \cup T^{-1}$; (NR2) $t_1t_2 = 0$ if $\mathbf{r}(t_1) \cap \mathbf{s}(t_2) = \emptyset$ for $t_1, t_2 \in T \cup T^0 \cup T^{-1}$; (NR3) $t_1^{-1}t_2 = 0$ if $t_1 \neq t_2$ for $t_1, t_2 \in T$; (NR4) $t^{-1}t = \mathbf{r}(t)$ for $t \in T$; (NR5) $t^{-1}A = 0$ if $\mathbf{s}(t) \neq A$ for $t \in T$ and $A \in T^0$; (NR6) 0x = 0 = x0 for all $x \in X$.

Remark: for $A, B \in T^0$ we regard AB as a path from A to B if $A \cap B \neq \emptyset$.

For any path $\alpha = t_1 t_2 \cdots t_n \in P(\Gamma) \setminus \{0\}$, we define

 $\alpha^{-1} = t_n^{-1} \cdots t_2^{-1} t_1^{-1}.$

イロト イヨト イヨト イヨト

Definition 7 Let $\Gamma = (V, T, \mathbf{s}, \mathbf{r})$ be a network. The semigroup is given by the presentation $Q_{\Gamma} := \langle X : R \rangle$ where

 $X = T \cup T^0 \cup T^{-1} \cup \{0\}$

and *R* consists of the following relations: (NR1) $\mathbf{s}(t)t = t = t\mathbf{r}(t)$ for $t \in T \cup T^0 \cup T^{-1}$; (NR2) $t_1t_2 = 0$ if $\mathbf{r}(t_1) \cap \mathbf{s}(t_2) = \emptyset$ for $t_1, t_2 \in T \cup T^0 \cup T^{-1}$; (NR3) $t_1^{-1}t_2 = 0$ if $t_1 \neq t_2$ for $t_1, t_2 \in T$; (NR4) $t^{-1}t = \mathbf{r}(t)$ for $t \in T$; (NR5) $t^{-1}A = 0$ if $\mathbf{s}(t) \neq A$ for $t \in T$ and $A \in T^0$; (NR6) 0x = 0 = x0 for all $x \in X$.

Remark: for $A, B \in T^0$ we regard AB as a path from A to B if $A \cap B \neq \emptyset$.

For any path $\alpha = t_1 t_2 \cdots t_n \in P(\Gamma) \setminus \{0\}$, we define

 $\alpha^{-1} = t_n^{-1} \cdots t_2^{-1} t_1^{-1}.$

イロト イヨト イヨト イヨト

Definition 7 Let $\Gamma = (V, T, \mathbf{s}, \mathbf{r})$ be a network. The semigroup is given by the presentation $Q_{\Gamma} := \langle X : R \rangle$ where

 $X = T \cup T^0 \cup T^{-1} \cup \{0\}$

and *R* consists of the following relations: (NR1) $\mathbf{s}(t)t = t = t\mathbf{r}(t)$ for $t \in T \cup T^0 \cup T^{-1}$; (NR2) $t_1t_2 = 0$ if $\mathbf{r}(t_1) \cap \mathbf{s}(t_2) = \emptyset$ for $t_1, t_2 \in T \cup T^0 \cup T^{-1}$; (NR3) $t_1^{-1}t_2 = 0$ if $t_1 \neq t_2$ for $t_1, t_2 \in T$; (NR4) $t^{-1}t = \mathbf{r}(t)$ for $t \in T$; (NR5) $t^{-1}A = 0$ if $\mathbf{s}(t) \neq A$ for $t \in T$ and $A \in T^0$; (NR6) 0x = 0 = x0 for all $x \in X$.

Remark: for $A, B \in T^0$ we regard AB as a path from A to B if $A \cap B \neq \emptyset$.

For any path $\alpha = t_1 t_2 \cdots t_n \in P(\Gamma) \setminus \{0\}$, we define

$$\alpha^{-1} = t_n^{-1} \cdots t_2^{-1} t_1^{-1}.$$

14 / 41

Proposition 1 The reduction system (X^+, \rightarrow) where $X = T \cup T^0 \cup T^{-1}$, $u \rightarrow v \Leftrightarrow (u = xu_i y, v = xv_i y \text{ for some } x, y \in X^*, (u_i, v_i) \in R)$

is a confluent rewriting system.

Outline of Proof: show the one-step case $(t_1t_2)t_3 = t_1(t_2t_3)$ for $t_1, t_2, t_3 \in T \cup T^0 \cup T^{-1}$, that is, consider the situation

we must show in each case that there exists w with

Proposition 1 The reduction system (X^+, \rightarrow) where $X = T \cup T^0 \cup T^{-1}$,

$$u
ightarrow v \Leftrightarrow (u = xu_iy, v = xv_iy ext{ for some } x, y \in X^*, (u_i, v_i) \in R)$$

is a confluent rewriting system.

Outline of Proof: show the one-step case $(t_1t_2)t_3 = t_1(t_2t_3)$ for $t_1, t_2, t_3 \in T \cup T^0 \cup T^{-1}$, that is, consider the situation

we must show in each case that there exists w with

(NR1)
$$\mathbf{s}(t)t = t = t\mathbf{r}(t)$$
 for $t \in T \cup T^0 \cup T^{-1}$;
(NR2) $t_1t_2 = 0$ if $\mathbf{r}(t_1) \cap \mathbf{s}(t_2) = \emptyset$ for $t_1, t_2 \in T \cup T^0 \cup T^{-1}$;
(NR3) $t_1^{-1}t_2 = 0$ if $t_1 \neq t_2$ for $t_1, t_2 \in T$;
(NR4) $t^{-1}t = \mathbf{r}(t)$ for $t \in T$;
(NR5) $t^{-1}A = 0$ if $\mathbf{s}(t) \neq A$ for $t \in T$ and $A \in T^0$;
(NR6) $0x = 0 = x0$ for all $x \in X$.

Remark: If we set $AB = A \cap B$ then for $t \in T$, $A \in T^0$ and $\mathbf{r}(t^{-1}) \subsetneq A$, then we have

$$t^{-1}\mathbf{r}(t^{-1})A = (t^{-1}\mathbf{r}(t^{-1}))A \to t^{-1}A \to 0$$

by (NR1) and (NR5), and also we have

$$t^{-1}\mathbf{r}(t^{-1})A = t^{-1}(\mathbf{r}(t^{-1})A) \to t^{-1}\mathbf{r}(t^{-1}) \to t^{-1}$$

by $\mathbf{r}(t^{-1})A = \mathbf{r}(t^{-1}) \cap A = \mathbf{r}(t^{-1})$ and (NR1). Hence if we have $AB = A \cap B$ then the relation is not confluent.

(NR1)
$$\mathbf{s}(t)t = t = t\mathbf{r}(t)$$
 for $t \in T \cup T^0 \cup T^{-1}$;
(NR2) $t_1t_2 = 0$ if $\mathbf{r}(t_1) \cap \mathbf{s}(t_2) = \emptyset$ for $t_1, t_2 \in T \cup T^0 \cup T^{-1}$;
(NR3) $t_1^{-1}t_2 = 0$ if $t_1 \neq t_2$ for $t_1, t_2 \in T$;
(NR4) $t^{-1}t = \mathbf{r}(t)$ for $t \in T$;
(NR5) $t^{-1}A = 0$ if $\mathbf{s}(t) \neq A$ for $t \in T$ and $A \in T^0$;
(NR6) $0x = 0 = x0$ for all $x \in X$.

Remark: If we set $AB = A \cap B$ then for $t \in T$, $A \in T^0$ and $\mathbf{r}(t^{-1}) \subsetneq A$, then we have

$$t^{-1}\mathbf{r}(t^{-1})A = (t^{-1}\mathbf{r}(t^{-1}))A \to t^{-1}A \to 0$$

by (NR1) and (NR5), and also we have

$$t^{-1}\mathbf{r}(t^{-1})A = t^{-1}(\mathbf{r}(t^{-1})A) o t^{-1}\mathbf{r}(t^{-1}) o t^{-1}$$

by $\mathbf{r}(t^{-1})A = \mathbf{r}(t^{-1}) \cap A = \mathbf{r}(t^{-1})$ and (NR1). Hence if we have $AB = A \cap B$ then the relation is not confluent.

Certainly, the reduction system (X^+, \rightarrow) where $X = T \cup T^0 \cup T^{-1}$ is a noetherian rewriting system. Consequently, every element of Q_{Γ} has a unique normal form as a word in X^+ .

Definition 8 A path $\alpha = t_1 t_2 \dots t_n$ is **reduced** (or **irreducible**) if

$$t_{n-1} \neq \mathbf{s}(t_n), t_{i-1} \neq \mathbf{s}(t_i) \text{ and } t_{i+1} \neq \mathbf{r}(t_i)$$

for 1 < i < n, where $t_1, t_2, \ldots, t_n \in T \cup T^0$ and $n \in \mathbb{N}$.

Lemma 1 For any non-zero path $\alpha \in P(\Gamma)$, $\mathbf{s}(\alpha) = \mathbf{s}(\alpha')$ and $\mathbf{r}(\alpha) = \mathbf{r}(\alpha')$, where α' is the unique reduced path such that $[\alpha] = [\alpha']$.

We put

$$RP(\Gamma) = \{ \alpha \in P(\Gamma) : \alpha \text{ is reduced} \}$$

and

 $RLP(\Gamma) = \{ \alpha \in LP(\Gamma) : \alpha \text{ is reduced} \}.$

Certainly, the reduction system (X^+, \rightarrow) where $X = T \cup T^0 \cup T^{-1}$ is a noetherian rewriting system. Consequently, every element of Q_{Γ} has a unique normal form as a word in X^+ .

Definition 8 A path $\alpha = t_1 t_2 \dots t_n$ is reduced (or irreducible) if

$$t_{n-1} \neq \mathbf{s}(t_n), t_{i-1} \neq \mathbf{s}(t_i) \text{ and } t_{i+1} \neq \mathbf{r}(t_i)$$

for 1 < i < n, where $t_1, t_2, \ldots, t_n \in T \cup T^0$ and $n \in \mathbb{N}$.

Lemma 1 For any non-zero path $\alpha \in P(\Gamma)$, $\mathbf{s}(\alpha) = \mathbf{s}(\alpha')$ and $\mathbf{r}(\alpha) = \mathbf{r}(\alpha')$, where α' is the unique reduced path such that $[\alpha] = [\alpha']$.

We put

$$RP(\Gamma) = \{ \alpha \in P(\Gamma) : \alpha \text{ is reduced} \}$$

and

 $RLP(\Gamma) = \{ \alpha \in LP(\Gamma) : \alpha \text{ is reduced} \}.$

Certainly, the reduction system (X^+, \rightarrow) where $X = T \cup T^0 \cup T^{-1}$ is a noetherian rewriting system. Consequently, every element of Q_{Γ} has a unique normal form as a word in X^+ .

Definition 8 A path $\alpha = t_1 t_2 \dots t_n$ is reduced (or irreducible) if

$$t_{n-1} \neq \mathbf{s}(t_n), t_{i-1} \neq \mathbf{s}(t_i) \text{ and } t_{i+1} \neq \mathbf{r}(t_i)$$

for 1 < i < n, where $t_1, t_2, \ldots, t_n \in T \cup T^0$ and $n \in \mathbb{N}$.

Lemma 1 For any non-zero path $\alpha \in P(\Gamma)$, $\mathbf{s}(\alpha) = \mathbf{s}(\alpha')$ and $\mathbf{r}(\alpha) = \mathbf{r}(\alpha')$, where α' is the unique reduced path such that $[\alpha] = [\alpha']$.

We put

$$RP(\Gamma) = \{ \alpha \in P(\Gamma) : \alpha \text{ is reduced} \}$$

and

 $RLP(\Gamma) = \{ \alpha \in LP(\Gamma) : \alpha \text{ is reduced} \}.$

Certainly, the reduction system (X^+, \rightarrow) where $X = T \cup T^0 \cup T^{-1}$ is a noetherian rewriting system. Consequently, every element of Q_{Γ} has a unique normal form as a word in X^+ .

Definition 8 A path $\alpha = t_1 t_2 \dots t_n$ is reduced (or irreducible) if

$$t_{n-1} \neq \mathbf{s}(t_n), t_{i-1} \neq \mathbf{s}(t_i) \text{ and } t_{i+1} \neq \mathbf{r}(t_i)$$

for 1 < i < n, where $t_1, t_2, \ldots, t_n \in T \cup T^0$ and $n \in \mathbb{N}$.

Lemma 1 For any non-zero path $\alpha \in P(\Gamma)$, $\mathbf{s}(\alpha) = \mathbf{s}(\alpha')$ and $\mathbf{r}(\alpha) = \mathbf{r}(\alpha')$, where α' is the unique reduced path such that $[\alpha] = [\alpha']$.

We put

$$RP(\Gamma) = \{ \alpha \in P(\Gamma) : \alpha \text{ is reduced} \}$$

and

$$RLP(\Gamma) = \{ \alpha \in LP(\Gamma) : \alpha \text{ is reduced} \}.$$

Networks \Rightarrow Right *-abundant semigroups

Theorem 1 Each element of Q_{Γ} has a unique normal form of one of the following types:

(i) $[\alpha]$; (ii) $[\beta^{-1}]$; (iii) $[\alpha\beta^{-1}]$ and (iv) [0],

where $\alpha \in RP(\Gamma)$, $\beta \in RLP(\Gamma)$ and in (iii) $\mathbf{r}(\alpha) \cap \mathbf{r}(\beta) \neq \emptyset$.

We will say that a word $w = \alpha \beta^{-1}$ with $\alpha \in RP(\Gamma)$, $\beta \in RLP(\Gamma)$ and $\mathbf{r}(\alpha) = \mathbf{r}(\beta)$ is a **right normal form**.

(i)
$$[\alpha] = [\alpha\beta^{-1}]$$
 where $\beta = \mathbf{r}(\alpha)$;
(ii) $[\beta^{-1}] = [\alpha\beta^{-1}]$ where $\alpha = \mathbf{r}(\beta)$;
(iii)
 $\left([\alpha\beta^{-1}] - \mathbf{r}(\alpha) - \mathbf{r}(\beta) \right)$

$$[\alpha \beta^{-1}] = \begin{cases} [\alpha \beta^{-1}] & \text{if } \mathbf{r}(\alpha) = \mathbf{r}(\beta) \\ [\mu \beta^{-1}] & \text{otherwise,} \end{cases}$$

where $\mu = \alpha \mathbf{r}(\beta)$.

Networks \Rightarrow Right *-abundant semigroups

Theorem 1 Each element of Q_{Γ} has a unique normal form of one of the following types:

(i) $[\alpha]$; (ii) $[\beta^{-1}]$; (iii) $[\alpha\beta^{-1}]$ and (iv) [0],

where $\alpha \in RP(\Gamma)$, $\beta \in RLP(\Gamma)$ and in (iii) $\mathbf{r}(\alpha) \cap \mathbf{r}(\beta) \neq \emptyset$.

We will say that a word $w = \alpha \beta^{-1}$ with $\alpha \in RP(\Gamma)$, $\beta \in RLP(\Gamma)$ and $\mathbf{r}(\alpha) = \mathbf{r}(\beta)$ is a **right normal form**.

(i)
$$[\alpha] = [\alpha\beta^{-1}]$$
 where $\beta = \mathbf{r}(\alpha)$;
(ii) $[\beta^{-1}] = [\alpha\beta^{-1}]$ where $\alpha = \mathbf{r}(\beta)$;
(iii)
 $[\alpha\beta^{-1}] = \begin{cases} [\alpha\beta^{-1}] & \text{if } \mathbf{r}(\alpha) = \mathbf{r}(\beta) \\ [\mu\beta^{-1}] & \text{otherwise,} \end{cases}$

where $\mu = \alpha \mathbf{r}(\beta)$.

18 / 41

Corollary 1 Each non-zero element of Q_{Γ} has a unique right normal form representative $\alpha\beta^{-1}$, where $\alpha \in RP(\Gamma)$, $\beta \in RLP(\Gamma)$ and $\mathbf{r}(\alpha) = \mathbf{r}(\beta)$.

Corollary 1 Each non-zero element of Q_{Γ} has a unique right normal form representative $\alpha\beta^{-1}$, where $\alpha \in RP(\Gamma)$, $\beta \in RLP(\Gamma)$ and $\mathbf{r}(\alpha) = \mathbf{r}(\beta)$.

Networks \Rightarrow Right *-abundant semigroups

Lemma 2 For any $[\alpha\beta^{-1}], [\mu\nu^{-1}] \in Q_{\Gamma}$ with $\alpha\beta^{-1}$ and $\mu\nu^{-1}$ in right normal form, we have

$$[\alpha\beta^{-1}][\mu\nu^{-1}] = \begin{cases} [\alpha\mu\nu^{-1}] & \text{if } \beta = \mathbf{r}(\alpha) \text{ and } \mathbf{r}(\alpha) \cap \mathbf{s}(\mu) \neq \emptyset \\ [\alpha\xi\nu^{-1}] & \text{if } \beta \in RLP(\Gamma) \setminus T^0, \mu = \beta\xi \text{ for } \xi \in RP(\Gamma) \\ [\alpha(\nu\eta)^{-1}] & \text{if } \beta \in RLP(\Gamma) \setminus T^0, \beta = \mu\eta \text{ for } \eta \in RP(\Gamma) \\ [0] & \text{otherwise.} \end{cases}$$

Lemma 3 The idempotent set of Q_{Γ} is

$$E(Q_{\Gamma}) = \{ [\alpha \alpha^{-1}] : \alpha \in RLP(\Gamma) \} \cup \{ [0] \},\$$

which contains a subsemilattice

 $E = E(Q_{\Gamma}) \setminus \{[A] : A \in T^0\} = \{[\alpha \alpha^{-1}] : \alpha \in RLP(\Gamma) \setminus T^0\} \cup \{0\}.$

Networks \Rightarrow Right *-abundant semigroups

Lemma 2 For any $[\alpha\beta^{-1}], [\mu\nu^{-1}] \in Q_{\Gamma}$ with $\alpha\beta^{-1}$ and $\mu\nu^{-1}$ in right normal form, we have

$$[\alpha\beta^{-1}][\mu\nu^{-1}] = \begin{cases} [\alpha\mu\nu^{-1}] & \text{if } \beta = \mathbf{r}(\alpha) \text{ and } \mathbf{r}(\alpha) \cap \mathbf{s}(\mu) \neq \emptyset \\ [\alpha\xi\nu^{-1}] & \text{if } \beta \in RLP(\Gamma) \setminus T^0, \mu = \beta\xi \text{ for } \xi \in RP(\Gamma) \\ [\alpha(\nu\eta)^{-1}] & \text{if } \beta \in RLP(\Gamma) \setminus T^0, \beta = \mu\eta \text{ for } \eta \in RP(\Gamma) \\ [0] & \text{otherwise.} \end{cases}$$

Lemma 3 The idempotent set of Q_{Γ} is

$$E(Q_{\Gamma}) = \{ [\alpha \alpha^{-1}] : \alpha \in RLP(\Gamma) \} \cup \{ [0] \},\$$

which contains a subsemilattice

$$E = E(Q_{\Gamma}) \setminus \{[A] : A \in T^0\} = \{[\alpha \alpha^{-1}] : \alpha \in RLP(\Gamma) \setminus T^0\} \cup \{0\}.$$

Lemma 4 For any $[\alpha\beta^{-1}] \in Q_{\Gamma} \setminus \{[0]\}$ with $\alpha\beta^{-1}$ in right normal form, we have $[\alpha\beta^{-1}] \mathcal{L}^* [\beta\beta^{-1}]$.

Lemma 5 Suppose that $[\alpha\beta^{-1}]$, $[\mu\nu^{-1}] \in Q_{\Gamma} \setminus \{[0]\}$ where $\alpha\beta^{-1}$ and $\mu\nu^{-1}$ are in right normal form.

- (i) $[\alpha\beta^{-1}] \mathcal{L}^* [\mu\nu^{-1}]$ if and only if $\beta = \nu$;
- (ii) if $\alpha, \mu \in RLP(\Gamma)$, then $[\alpha\beta^{-1}] \mathcal{R} [\mu\nu^{-1}]$ if and only if $\alpha = \mu$;
- (iii) if $\alpha \in RLP(\Gamma)$ and $\mu \in RP(\Gamma) \setminus RLP(\Gamma)$, then $([\alpha\beta^{-1}], [\mu\nu^{-1}]) \notin \mathcal{R}^*$.

Theorem 2 The semigroup Q_{Γ} is a right *-abundant semigroup with a zero.

Lemma 4 For any $[\alpha\beta^{-1}] \in Q_{\Gamma} \setminus \{[0]\}$ with $\alpha\beta^{-1}$ in right normal form, we have $[\alpha\beta^{-1}] \mathcal{L}^* [\beta\beta^{-1}]$.

Lemma 5 Suppose that $[\alpha\beta^{-1}]$, $[\mu\nu^{-1}] \in Q_{\Gamma} \setminus \{[0]\}$ where $\alpha\beta^{-1}$ and $\mu\nu^{-1}$ are in right normal form.

(i)
$$[\alpha\beta^{-1}] \mathcal{L}^* [\mu\nu^{-1}]$$
 if and only if $\beta = \nu$;

(ii) if $\alpha, \mu \in RLP(\Gamma)$, then $[\alpha\beta^{-1}] \mathcal{R} [\mu\nu^{-1}]$ if and only if $\alpha = \mu$;

(iii) if $\alpha \in RLP(\Gamma)$ and $\mu \in RP(\Gamma) \setminus RLP(\Gamma)$, then $([\alpha \beta^{-1}], [\mu \nu^{-1}]) \notin \mathcal{R}^*$.

Theorem 2 The semigroup Q_{Γ} is a right *-abundant semigroup with a zero.

Lemma 4 For any $[\alpha\beta^{-1}] \in Q_{\Gamma} \setminus \{[0]\}$ with $\alpha\beta^{-1}$ in right normal form, we have $[\alpha\beta^{-1}] \mathcal{L}^* [\beta\beta^{-1}]$.

Lemma 5 Suppose that $[\alpha\beta^{-1}]$, $[\mu\nu^{-1}] \in Q_{\Gamma} \setminus \{[0]\}$ where $\alpha\beta^{-1}$ and $\mu\nu^{-1}$ are in right normal form.

(i)
$$[\alpha\beta^{-1}] \mathcal{L}^* [\mu\nu^{-1}]$$
 if and only if $\beta = \nu$;

(ii) if $\alpha, \mu \in RLP(\Gamma)$, then $[\alpha\beta^{-1}] \mathcal{R} [\mu\nu^{-1}]$ if and only if $\alpha = \mu$;

(iii) if $\alpha \in RLP(\Gamma)$ and $\mu \in RP(\Gamma) \setminus RLP(\Gamma)$, then $([\alpha \beta^{-1}], [\mu \nu^{-1}]) \notin \mathcal{R}^*$.

Theorem 2 The semigroup Q_{Γ} is a right *-abundant semigroup with a zero.

Put $S_{\Gamma} = \{ [\alpha \beta^{-1}] \in Q_{\Gamma} : \alpha \in PR(\Gamma), \ \beta \in RLP(\Gamma) \setminus T^{0}, \ \mathbf{r}(\alpha) = \mathbf{r}(\beta) \} \cup \{ [0] \}.$

$$[\alpha\beta^{-1}][\mu\nu^{-1}] = \begin{cases} [\alpha\xi\nu^{-1}] & \text{if } \mu = \beta\xi \text{ for some } \xi \in RP(\Gamma) \\ [\alpha(\nu\eta)^{-1}] & \text{if } \beta = \mu\eta \text{ for some } \eta \in RP(\Gamma) \\ [0] & \text{otherwise.} \end{cases}$$

Clearly, the subsemilattice

 $E = E(Q_{\Gamma}) \setminus \{[A] : A \in T^{0}\} = \{[\alpha \alpha^{-1}] : \alpha \in RLP(\Gamma) \setminus T^{0}\} \cup \{0\}$

is the set of all idempotents of S_{Γ} .

For all $[\xi\xi^{-1}] \in E$ and $[\alpha\beta^{-1}] \in S_{\Gamma} \setminus \{[0]\},$ $[\xi\xi^{-1}][\alpha\beta^{-1}] = [\alpha\beta^{-1}]([\xi\xi^{-1}][\alpha\beta^{-1}])^*.$

Put $S_{\Gamma} = \{ [\alpha \beta^{-1}] \in Q_{\Gamma} : \alpha \in PR(\Gamma), \ \beta \in RLP(\Gamma) \setminus T^{0}, \ \mathbf{r}(\alpha) = \mathbf{r}(\beta) \} \cup \{ [0] \}.$

$$[\alpha\beta^{-1}][\mu\nu^{-1}] = \begin{cases} [\alpha\xi\nu^{-1}] & \text{if } \mu = \beta\xi \text{ for some } \xi \in RP(\Gamma) \\ [\alpha(\nu\eta)^{-1}] & \text{if } \beta = \mu\eta \text{ for some } \eta \in RP(\Gamma) \\ [0] & \text{otherwise.} \end{cases}$$

Clearly, the subsemilattice

$$E = E(Q_{\Gamma}) \setminus \{[A] : A \in T^{0}\} = \{[\alpha \alpha^{-1}] : \alpha \in RLP(\Gamma) \setminus T^{0}\} \cup \{0\}$$

is the set of all idempotents of S_{Γ} .

For all
$$[\xi\xi^{-1}] \in E$$
 and $[\alpha\beta^{-1}] \in S_{\Gamma} \setminus \{[0]\},$
 $[\xi\xi^{-1}][\alpha\beta^{-1}] = [\alpha\beta^{-1}]([\xi\xi^{-1}][\alpha\beta^{-1}])^*.$

Put $S_{\Gamma} = \{ [\alpha \beta^{-1}] \in Q_{\Gamma} : \alpha \in PR(\Gamma), \ \beta \in RLP(\Gamma) \setminus T^{0}, \ \mathbf{r}(\alpha) = \mathbf{r}(\beta) \} \cup \{ [0] \}.$

$$[\alpha\beta^{-1}][\mu\nu^{-1}] = \begin{cases} [\alpha\xi\nu^{-1}] & \text{if } \mu = \beta\xi \text{ for some } \xi \in RP(\Gamma) \\ [\alpha(\nu\eta)^{-1}] & \text{if } \beta = \mu\eta \text{ for some } \eta \in RP(\Gamma) \\ [0] & \text{otherwise.} \end{cases}$$

Clearly, the subsemilattice

$$E = E(Q_{\Gamma}) \setminus \{ [A] : A \in T^{0} \} = \{ [\alpha \alpha^{-1}] : \alpha \in RLP(\Gamma) \setminus T^{0} \} \cup \{ 0 \}$$

is the set of all idempotents of S_{Γ} .

For all
$$[\xi\xi^{-1}] \in E$$
 and $[\alpha\beta^{-1}] \in S_{\Gamma} \setminus \{[0]\},$
 $[\xi\xi^{-1}][\alpha\beta^{-1}] = [\alpha\beta^{-1}]([\xi\xi^{-1}][\alpha\beta^{-1}])^*.$

Put $S_{\Gamma} = \{ [\alpha \beta^{-1}] \in Q_{\Gamma} : \alpha \in PR(\Gamma), \ \beta \in RLP(\Gamma) \setminus T^{0}, \ \mathbf{r}(\alpha) = \mathbf{r}(\beta) \} \cup \{ [0] \}.$

$$[\alpha\beta^{-1}][\mu\nu^{-1}] = \begin{cases} [\alpha\xi\nu^{-1}] & \text{if } \mu = \beta\xi \text{ for some } \xi \in RP(\Gamma) \\ [\alpha(\nu\eta)^{-1}] & \text{if } \beta = \mu\eta \text{ for some } \eta \in RP(\Gamma) \\ [0] & \text{otherwise.} \end{cases}$$

Clearly, the subsemilattice

$$E = E(Q_{\Gamma}) \setminus \{ [A] : A \in T^{0} \} = \{ [\alpha \alpha^{-1}] : \alpha \in RLP(\Gamma) \setminus T^{0} \} \cup \{ 0 \}$$

is the set of all idempotents of S_{Γ} .

For all
$$[\xi\xi^{-1}] \in E$$
 and $[\alpha\beta^{-1}] \in S_{\Gamma} \setminus \{[0]\},$
 $[\xi\xi^{-1}][\alpha\beta^{-1}] = [\alpha\beta^{-1}]([\xi\xi^{-1}][\alpha\beta^{-1}])^*.$

Inverse semigroups

Lemma 6 If $[\alpha\beta^{-1}] \in Q_{\Gamma} \setminus \{[0]\}$ is regular with $\alpha\beta^{-1}$ in right normal form then

$$\alpha, \beta \in RLP(\Gamma)$$
 and $[\alpha \alpha^{-1}] \mathcal{R} [\alpha \beta^{-1}] \mathcal{L} [\beta \beta^{-1}],$

where $[\alpha \alpha^{-1}], [\beta \beta^{-1}] \in E(Q_{\Gamma}).$

Put

 $R_{\Gamma} = \{ [\alpha \beta^{-1}] \in S_{\Gamma} : \alpha, \beta \in RLP(\Gamma) \setminus T^{0} \text{and } \mathbf{r}(\alpha) = \mathbf{r}(\beta) \} \cup \{ [0] \}.$

Clearly, $R_{\Gamma} \subseteq S_{\Gamma}$ and

 $E(R_{\Gamma}) = E(S_{\Gamma}) = \{ [\alpha \alpha^{-1}] : \alpha \in RLP(\Gamma) \setminus T^0 \} \cup \{ 0 \}.$

Lemma 6 If $[\alpha\beta^{-1}] \in Q_{\Gamma} \setminus \{[0]\}$ is regular with $\alpha\beta^{-1}$ in right normal form then

$$\alpha, \beta \in RLP(\Gamma)$$
 and $[\alpha \alpha^{-1}] \mathcal{R} [\alpha \beta^{-1}] \mathcal{L} [\beta \beta^{-1}],$

where $[\alpha \alpha^{-1}], [\beta \beta^{-1}] \in E(Q_{\Gamma}).$

Put

$$R_{\Gamma} = \{ [\alpha\beta^{-1}] \in S_{\Gamma} : \alpha, \beta \in RLP(\Gamma) \setminus T^{0} \text{and } \mathbf{r}(\alpha) = \mathbf{r}(\beta) \} \cup \{ [0] \}.$$

Clearly, $R_{\Gamma} \subseteq S_{\Gamma}$ and

 $E(R_{\Gamma}) = E(S_{\Gamma}) = \{ [\alpha \alpha^{-1}] : \alpha \in RLP(\Gamma) \setminus T^0 \} \cup \{ 0 \}.$

Lemma 6 If $[\alpha\beta^{-1}] \in Q_{\Gamma} \setminus \{[0]\}$ is regular with $\alpha\beta^{-1}$ in right normal form then

$$\alpha, \beta \in RLP(\Gamma)$$
 and $[\alpha \alpha^{-1}] \mathcal{R} [\alpha \beta^{-1}] \mathcal{L} [\beta \beta^{-1}]$,

where $[\alpha \alpha^{-1}], [\beta \beta^{-1}] \in E(Q_{\Gamma}).$

Put

$$R_{\Gamma} = \{ [\alpha\beta^{-1}] \in S_{\Gamma} : \alpha, \beta \in RLP(\Gamma) \setminus T^{0} \text{and } \mathbf{r}(\alpha) = \mathbf{r}(\beta) \} \cup \{ [0] \}.$$

Clearly, $R_{\Gamma} \subseteq S_{\Gamma}$ and

 $E(R_{\Gamma}) = E(S_{\Gamma}) = \{ [\alpha \alpha^{-1}] : \alpha \in RLP(\Gamma) \setminus T^{0} \} \cup \{ 0 \}.$

Lemma 6 If $[\alpha\beta^{-1}] \in Q_{\Gamma} \setminus \{[0]\}$ is regular with $\alpha\beta^{-1}$ in right normal form then

$$\alpha, \beta \in RLP(\Gamma)$$
 and $[\alpha \alpha^{-1}] \mathcal{R} [\alpha \beta^{-1}] \mathcal{L} [\beta \beta^{-1}],$

where $[\alpha \alpha^{-1}], [\beta \beta^{-1}] \in E(Q_{\Gamma}).$

Put

$$R_{\Gamma} = \{ [\alpha\beta^{-1}] \in S_{\Gamma} : \alpha, \beta \in RLP(\Gamma) \setminus T^{0} \text{and } \mathbf{r}(\alpha) = \mathbf{r}(\beta) \} \cup \{ [0] \}.$$

Clearly, $R_{\Gamma} \subseteq S_{\Gamma}$ and

$$E(R_{\Gamma}) = E(S_{\Gamma}) = \{ [\alpha \alpha^{-1}] : \alpha \in RLP(\Gamma) \setminus T^{0} \} \cup \{ 0 \}.$$

A semigroup is said to be **congruence-free** if it has only two congruences, the identity congruence and the universal congruence.

A right *-abundant semigroup is said to be *-**congruence-free** if it has only two unary semigroup congruences, the identity congruence and the universal congruence.

A *-ideal of a right abundant semigroup S is an ideal of S which is closed under the relation \mathcal{L}^* . It is easy to see that if we regard a right *-abundant semigroup S as a unary semigroup and I is a proper *-ideal of S then $\rho_I = (I \times I) \cup 1_S$ is a unary semigroup congruence on S.

A semigroup is said to be **congruence-free** if it has only two congruences, the identity congruence and the universal congruence.

A right *-abundant semigroup is said to be *-**congruence-free** if it has only two unary semigroup congruences, the identity congruence and the universal congruence.

A *-ideal of a right abundant semigroup S is an ideal of S which is closed under the relation \mathcal{L}^* . It is easy to see that if we regard a right *-abundant semigroup S as a unary semigroup and I is a proper *-ideal of S then $\rho_I = (I \times I) \cup 1_S$ is a unary semigroup congruence on S. A semigroup is said to be **congruence-free** if it has only two congruences, the identity congruence and the universal congruence.

A right *-abundant semigroup is said to be *-**congruence-free** if it has only two unary semigroup congruences, the identity congruence and the universal congruence.

A *-ideal of a right abundant semigroup S is an ideal of S which is closed under the relation \mathcal{L}^* . It is easy to see that if we regard a right *-abundant semigroup S as a unary semigroup and I is a proper *-ideal of S then $\rho_I = (I \times I) \cup 1_S$ is a unary semigroup congruence on S.

Lemma 7 Let $I = \{ [\alpha \beta^{-1}] \in Q_{\Gamma} : \alpha \in RP(\Gamma) \setminus RLP(\Gamma) \} \cup \{ [0] \}$. Then I is a proper ideal of Q_{Γ} . Further $\rho_I = (I \times I) \cup 1_{Q_{\Gamma}}$ is an idempotent separating congruence on Q_{Γ} .

Lemma 8 Let $I = \{ [\alpha \beta^{-1}] \in S_{\Gamma} : \alpha \in RP(\Gamma) \setminus RLP(\Gamma) \} \cup \{ [0] \}$. Then I is a proper ideal of S_{Γ} . Further $\rho_{I} = (I \times I) \cup 1_{S_{\Gamma}}$ is an idempotent separating congruence on S_{Γ} .

 Q_{Γ} and S_{Γ} are never congruence-free if they have non-regular elements. Notice that if t is a relation in Γ with $|\mathbf{s}(t)| > 1$ and $v \in \mathbf{s}(t)$, then we get $vt \in RP(\Gamma) \setminus RLP(\Gamma)$ and so $[vtt^{-1}] \in S_{\Gamma} \subseteq Q_{\Gamma}$ is a non-regular element.

Theorem 3 If $\Gamma = (V, T, \mathbf{s}, \mathbf{r})$ is a network and there exists $t \in T$ with $|\mathbf{s}(t)| > 1$, then Q_{Γ} and S_{Γ} are not congruence-free as a semigroup.

(日) (四) (日) (日) (日)

Lemma 7 Let $I = \{ [\alpha\beta^{-1}] \in Q_{\Gamma} : \alpha \in RP(\Gamma) \setminus RLP(\Gamma) \} \cup \{ [0] \}$. Then I is a proper ideal of Q_{Γ} . Further $\rho_I = (I \times I) \cup 1_{Q_{\Gamma}}$ is an idempotent separating congruence on Q_{Γ} .

Lemma 8 Let $I = \{ [\alpha\beta^{-1}] \in S_{\Gamma} : \alpha \in RP(\Gamma) \setminus RLP(\Gamma) \} \cup \{ [0] \}$. Then I is a proper ideal of S_{Γ} . Further $\rho_I = (I \times I) \cup 1_{S_{\Gamma}}$ is an idempotent separating congruence on S_{Γ} .

 Q_{Γ} and S_{Γ} are never congruence-free if they have non-regular elements. Notice that if t is a relation in Γ with $| \mathbf{s}(t) | > 1$ and $v \in \mathbf{s}(t)$, then we get $vt \in RP(\Gamma) \setminus RLP(\Gamma)$ and so $[vtt^{-1}] \in S_{\Gamma} \subseteq Q_{\Gamma}$ is a non-regular element.

Theorem 3 If $\Gamma = (V, T, \mathbf{s}, \mathbf{r})$ is a network and there exists $t \in T$ with $|\mathbf{s}(t)| > 1$, then Q_{Γ} and S_{Γ} are not congruence-free as a semigroup.

イロト 不得下 イヨト イヨト

Lemma 7 Let $I = \{ [\alpha\beta^{-1}] \in Q_{\Gamma} : \alpha \in RP(\Gamma) \setminus RLP(\Gamma) \} \cup \{ [0] \}$. Then I is a proper ideal of Q_{Γ} . Further $\rho_I = (I \times I) \cup 1_{Q_{\Gamma}}$ is an idempotent separating congruence on Q_{Γ} .

Lemma 8 Let $I = \{ [\alpha\beta^{-1}] \in S_{\Gamma} : \alpha \in RP(\Gamma) \setminus RLP(\Gamma) \} \cup \{ [0] \}$. Then I is a proper ideal of S_{Γ} . Further $\rho_I = (I \times I) \cup 1_{S_{\Gamma}}$ is an idempotent separating congruence on S_{Γ} .

 Q_{Γ} and S_{Γ} are never congruence-free if they have non-regular elements. Notice that if t is a relation in Γ with $| \mathbf{s}(t) | > 1$ and $v \in \mathbf{s}(t)$, then we get $vt \in RP(\Gamma) \setminus RLP(\Gamma)$ and so $[vtt^{-1}] \in S_{\Gamma} \subseteq Q_{\Gamma}$ is a non-regular element.

Theorem 3 If $\Gamma = (V, T, \mathbf{s}, \mathbf{r})$ is a network and there exists $t \in T$ with $|\mathbf{s}(t)| > 1$, then Q_{Γ} and S_{Γ} are not congruence-free as a semigroup.

イロト 不得下 イヨト イヨト 二日

Lemma 7 Let $I = \{ [\alpha\beta^{-1}] \in Q_{\Gamma} : \alpha \in RP(\Gamma) \setminus RLP(\Gamma) \} \cup \{ [0] \}$. Then I is a proper ideal of Q_{Γ} . Further $\rho_I = (I \times I) \cup 1_{Q_{\Gamma}}$ is an idempotent separating congruence on Q_{Γ} .

Lemma 8 Let $I = \{ [\alpha\beta^{-1}] \in S_{\Gamma} : \alpha \in RP(\Gamma) \setminus RLP(\Gamma) \} \cup \{ [0] \}$. Then I is a proper ideal of S_{Γ} . Further $\rho_I = (I \times I) \cup 1_{S_{\Gamma}}$ is an idempotent separating congruence on S_{Γ} .

 Q_{Γ} and S_{Γ} are never congruence-free if they have non-regular elements. Notice that if t is a relation in Γ with $| \mathbf{s}(t) | > 1$ and $v \in \mathbf{s}(t)$, then we get $vt \in RP(\Gamma) \setminus RLP(\Gamma)$ and so $[vtt^{-1}] \in S_{\Gamma} \subseteq Q_{\Gamma}$ is a non-regular element.

Theorem 3 If $\Gamma = (V, T, \mathbf{s}, \mathbf{r})$ is a network and there exists $t \in T$ with $|\mathbf{s}(t)| > 1$, then Q_{Γ} and S_{Γ} are not congruence-free as a semigroup.

イロト 不得 トイヨト イヨト 二日

Q_{Γ} Congruence *-free

Let $\Gamma = (V, T, \mathbf{r}, \mathbf{s})$ be a network. For each $A \subset V$ the cardinality of the set $\{t \in T : \mathbf{s}(t) = A\}$ is called the *out-index* of A in Γ , denoted by o(A).

Lemma 9 Let $\Gamma = (V, T, \mathbf{r}, \mathbf{s})$ be a network and let $t \in T$ be such that $o(\mathbf{r}(t)) = 0$ and there does not exist $A \in T^0 \setminus V$ with $\mathbf{r}(t) \subseteq A$. Then the principal ideal I generated by $[tt^{-1}]$ is a proper *-ideal of Q_{Γ} , where

$$I = Q_{\Gamma}[tt^{-1}]Q_{\Gamma}$$

= {[\alpha\beta^{-1}] : \alpha \in RP(\Gamma), \beta \in RLP(\Gamma), \mathbf{r}(\alpha) = \mathbf{r}(\beta) = \mathbf{r}(t) \} \beta \{[0]\}.

Theorem 4 If $\Gamma = (V, T, \mathbf{s}, \mathbf{r})$ is a network and there exists $t \in T$ such that $o(\mathbf{r}(t)) = 0$ and there does not exist $A \in T^0 \setminus V$ with $\mathbf{r}(t) \subseteq A$, then Q_{Γ} is not *-congruence-free as a unary semigroup.

Q_{Γ} Congruence *-free

Let $\Gamma = (V, T, \mathbf{r}, \mathbf{s})$ be a network. For each $A \subset V$ the cardinality of the set $\{t \in T : \mathbf{s}(t) = A\}$ is called the *out-index* of A in Γ , denoted by o(A).

Lemma 9 Let $\Gamma = (V, T, \mathbf{r}, \mathbf{s})$ be a network and let $t \in T$ be such that $o(\mathbf{r}(t)) = 0$ and there does not exist $A \in T^0 \setminus V$ with $\mathbf{r}(t) \subseteq A$. Then the principal ideal I generated by $[tt^{-1}]$ is a proper *-ideal of Q_{Γ} , where

$$I = Q_{\Gamma}[tt^{-1}]Q_{\Gamma}$$

= {[\alpha\beta^{-1}] : \alpha \in RP(\Gamma), \beta \in RLP(\Gamma), \mathbf{r}(\alpha) = \mathbf{r}(\beta) = \mathbf{r}(t)} \cdot \{[0]\}.

Theorem 4 If $\Gamma = (V, T, \mathbf{s}, \mathbf{r})$ is a network and there exists $t \in T$ such that $o(\mathbf{r}(t)) = 0$ and there does not exist $A \in T^0 \setminus V$ with $\mathbf{r}(t) \subseteq A$, then Q_{Γ} is not *-congruence-free as a unary semigroup.

Q_{Γ} Congruence *-free

Let $\Gamma = (V, T, \mathbf{r}, \mathbf{s})$ be a network. For each $A \subset V$ the cardinality of the set $\{t \in T : \mathbf{s}(t) = A\}$ is called the *out-index* of A in Γ , denoted by o(A).

Lemma 9 Let $\Gamma = (V, T, \mathbf{r}, \mathbf{s})$ be a network and let $t \in T$ be such that $o(\mathbf{r}(t)) = 0$ and there does not exist $A \in T^0 \setminus V$ with $\mathbf{r}(t) \subseteq A$. Then the principal ideal I generated by $[tt^{-1}]$ is a proper *-ideal of Q_{Γ} , where

$$I = Q_{\Gamma}[tt^{-1}]Q_{\Gamma}$$

= {[\alpha\beta^{-1}] : \alpha \in RP(\Gamma), \beta \in RLP(\Gamma), \mathbf{r}(\alpha) = \mathbf{r}(\beta) = \mathbf{r}(t)} \cdot \{[0]\}.

Theorem 4 If $\Gamma = (V, T, \mathbf{s}, \mathbf{r})$ is a network and there exists $t \in T$ such that $o(\mathbf{r}(t)) = 0$ and there does not exist $A \in T^0 \setminus V$ with $\mathbf{r}(t) \subseteq A$, then Q_{Γ} is not *-congruence-free as a unary semigroup.

Lemma 10 Let $\Gamma = (V, T, \mathbf{r}, \mathbf{s})$ be a network with |T| > 1 and let $t, q \in T$ be such that $o(\mathbf{r}(t)) = 0$, $\mathbf{r}(t) \neq \mathbf{r}(q)$ and there does not exist $A \in T^0 \setminus V$ with $\mathbf{r}(t) \subseteq A$. Then the principal ideal generated by $[tt^{-1}]$ is a proper *-ideal of S_{Γ} , where

$$I = S_{\Gamma}^{1}[tt^{-1}]S_{\Gamma}^{1}$$

= {[\alpha\beta^{-1}] : \alpha \in RP(\Gamma), \beta \in RLP(\Gamma) \beta T^{0}, \mathbf{r}(\alpha) = \mathbf{r}(\beta) = \mathbf{r}(t) \beta) \beta [[0] \beta.

Theorem 5 If $\Gamma = (V, T, \mathbf{r}, \mathbf{s})$ is a network with |T| > 1 and let $t, q \in T$ be such that $o(\mathbf{r}(t)) = 0$, $\mathbf{r}(t) \neq \mathbf{r}(q)$ and there does not exist $A \in T^0 \setminus V$ with $\mathbf{r}(t) \subseteq A$, then S_{Γ} is not *-congruence-free as a unary semigroup.

Lemma 10 Let $\Gamma = (V, T, \mathbf{r}, \mathbf{s})$ be a network with |T| > 1 and let $t, q \in T$ be such that $o(\mathbf{r}(t)) = 0$, $\mathbf{r}(t) \neq \mathbf{r}(q)$ and there does not exist $A \in T^0 \setminus V$ with $\mathbf{r}(t) \subseteq A$. Then the principal ideal generated by $[tt^{-1}]$ is a proper *-ideal of S_{Γ} , where

$$I = S_{\Gamma}^{1}[tt^{-1}]S_{\Gamma}^{1}$$

= {[\alpha\beta^{-1}] : \alpha \in RP(\Gamma), \beta \in RLP(\Gamma) \beta T^{0}, \mathbf{r}(\alpha) = \mathbf{r}(\beta) = \mathbf{r}(t) \beta) \beta [[0] \beta.

Theorem 5 If $\Gamma = (V, T, \mathbf{r}, \mathbf{s})$ is a network with |T| > 1 and let $t, q \in T$ be such that $o(\mathbf{r}(t)) = 0$, $\mathbf{r}(t) \neq \mathbf{r}(q)$ and there does not exist $A \in T^0 \setminus V$ with $\mathbf{r}(t) \subseteq A$, then S_{Γ} is not *-congruence-free as a unary semigroup.

Lemma 11 Let $\Gamma = (V, T, \mathbf{r}, \mathbf{s})$ be a network with |T| > 1 and let $t, q \in T$ be such that $o(\mathbf{r}(t)) = 0$, $\mathbf{r}(t) \neq \mathbf{r}(q)$ and there does not exist $A \in T^0 \setminus V$ with $\mathbf{r}(t) \subseteq A$. Then the principal ideal I generated by $[tt^{-1}]$ is a proper ideal of R_{Γ} , where

$$I = R_{\Gamma}[tt^{-1}]R_{\Gamma}$$

= {[\alpha\beta^{-1}] : \alpha, \beta \in RLP(\Gamma) \beta T^0, \mathbf{r}(\alpha) = \mathbf{r}(\beta) = \mathbf{r}(t) \beta) \beta [[0] \beta.

Theorem 6 If $\Gamma = (V, T, \mathbf{r}, \mathbf{s})$ is a network with |T| > 1 and let $t, q \in T$ be such that $o(\mathbf{r}(t)) = 0$, $\mathbf{r}(t) \neq \mathbf{r}(q)$ and there does not exist $A \in T^0 \setminus V$ with $\mathbf{r}(t) \subseteq A$, then R_{Γ} is not congruence-free.

Lemma 11 Let $\Gamma = (V, T, \mathbf{r}, \mathbf{s})$ be a network with |T| > 1 and let $t, q \in T$ be such that $o(\mathbf{r}(t)) = 0$, $\mathbf{r}(t) \neq \mathbf{r}(q)$ and there does not exist $A \in T^0 \setminus V$ with $\mathbf{r}(t) \subseteq A$. Then the principal ideal I generated by $[tt^{-1}]$ is a proper ideal of R_{Γ} , where

$$I = R_{\Gamma}[tt^{-1}]R_{\Gamma}$$

= {[\alpha\beta^{-1}] : \alpha, \beta \in RLP(\Gamma) \beta \mathbf{T}^0, \mathbf{r}(\alpha) = \mathbf{r}(\beta) = \mathbf{r}(t) \beta) \beta [[0] \beta.

Theorem 6 If $\Gamma = (V, T, \mathbf{r}, \mathbf{s})$ is a network with |T| > 1 and let $t, q \in T$ be such that $o(\mathbf{r}(t)) = 0$, $\mathbf{r}(t) \neq \mathbf{r}(q)$ and there does not exist $A \in T^0 \setminus V$ with $\mathbf{r}(t) \subseteq A$, then R_{Γ} is not congruence-free.

Let $\Gamma = (V, T)$ be a network as shown in the following, where

$$V = \{v_1, v_2, v_3, v_4\}$$
 and $T = \{t_1, t_2\},$

where $t_1 = (\{v_1, v_2\}, \{v_3\})$ and $t_2 = (\{v_3\}, \{v_4\})$.

We get

$$T^0 = \{A\} \cup V,$$

where $A = \{v_1, v_2\}$.

Let
$$X = \{v_1, v_2, A\}$$
, where $A = \{v_1, v_2\}$,
 $X_{v_1, v_2} = \{w \in X^+ : v_1v_1, v_2v_2, AA, v_1v_2 \text{ and } v_2v_1 \text{ are not subwords in } w\}$
and

$$X_{A} = \{w \in X_{v_1,v_2} : w = \mu x, x \in X \setminus \{A\}\}.$$

We have

$$RP(\Gamma) = T \cup T^0 \cup X_{v_1,v_2} \cup X_A t_1 \cup X_A t_1 t_2 \cup \{t_1 t_2\}$$

 and

$$RLP(\Gamma) = T \cup T^0 \cup \{t_1 t_2\}.$$

э.

æ

$$\begin{aligned} Q_{\Gamma} &= \{ [\alpha \mathbf{r}(\alpha)] : \alpha \in RP(\Gamma) \} \cup \{ [\mathbf{r}(\beta)\beta^{-1}] : \beta \in RLP(\Gamma) \} \\ &\cup \{ [\alpha\beta^{-1}] : \alpha, \beta \in RLP(\Gamma) \text{ and } \mathbf{r}(\alpha) = \mathbf{r}(\beta) \} \\ &\cup \{ [\alpha t_1^{-1}] : \alpha \in X_A A \cup X_A t_1 \} \\ &\cup \{ [\alpha t_2^{-1}] : \alpha \in X_A t_1 t_2 \} \cup \{ [\alpha(t_1 t_2)^{-1}] : \alpha \in X_A t_1 t_2 \} \cup \{ [0] \}, \end{aligned}$$

$$\begin{aligned} S_{\Gamma} &= \{ [\mathbf{r}(\beta)\beta^{-1}] : \beta \in RLP(\Gamma) \setminus T^0 \} \\ &\cup \{ [\alpha\beta^{-1}] : \alpha \in RLP(\Gamma), \beta \in RLP(\Gamma) \setminus T^0 \text{ and } \mathbf{r}(\alpha) = \mathbf{r}(\beta) \} \\ &\cup \{ [\alpha t_1^{-1}] : \alpha \in X_A A \cup X_A t_1 \} \\ &\cup \{ [\alpha t_2^{-1}] : \alpha \in X_A t_1 t_2 \} \cup \{ [\alpha(t_1 t_2)^{-1}] : \alpha \in X_A t_1 t_2 \} \cup \{ [0] \}, \end{aligned}$$

and

$$R_{\Gamma} = \{ [\alpha\beta^{-1}] : \alpha, \beta \in RLP(\Gamma) \setminus T^{0} \text{ and } \mathbf{r}(\alpha) = \mathbf{r}(\beta) \} \cup \{ [0] \}$$
$$= \{ [t_{1}t_{1}^{-1}], [t_{2}t_{2}^{-1}], [t_{1}t_{2}t_{2}^{-1}], [t_{1}t_{2}(t_{1}t_{2})^{-1}], [0] \}.$$

Lemma 9 Let $\Gamma = (V, T, \mathbf{r}, \mathbf{s})$ be a network and let $t \in T$ be such that $o(\mathbf{r}(t)) = 0$ and there does not exist $A \in T^0 \setminus V$ with $\mathbf{r}(t) \subseteq A$. Then the principal ideal I generated by $[tt^{-1}]$ is a proper *-ideal of Q_{Γ} .

Set

$$\begin{split} I_{1} &= Q_{\Gamma}[t_{2}t_{2}^{-1}]Q_{\Gamma} \\ &= \{[\alpha\beta^{-1}] : \alpha \in RP(\Gamma), \beta \in RLP(\Gamma), \mathbf{r}(\alpha) = \mathbf{r}(\beta) = \mathbf{r}(t_{2})\} \cup \{[0]\} \\ &= \{[\alpha\mathbf{r}(t_{2})] : \alpha \in \{t_{2}, \mathbf{r}(t_{2}), t_{1}t_{2}\} \cup X_{A}t_{1}t_{2}\} \cup \{[\mathbf{r}(t_{2})\beta^{-1}] : \beta \in \{t_{2}, t_{1}t_{2}\}\} \\ &\cup \{[\alpha\beta^{-1}] : \alpha, \beta \in \{t_{2}, t_{1}t_{2}\}\} \\ &\cup \{[\alpha t_{2}^{-1}] : \alpha \in X_{A}t_{1}t_{2}\} \cup \{[\alpha(t_{1}t_{2})^{-1}] : \alpha \in X_{A}t_{1}t_{2}\} \cup \{[0]\}, \end{split}$$

Then I_1 is a proper *-ideal of Q_{Γ} .

Image: Image:

3

Lemma 10 Let $\Gamma = (V, T, \mathbf{r}, \mathbf{s})$ be a network with |T| > 1 and let $t, q \in T$ be such that $o(\mathbf{r}(t)) = 0$, $\mathbf{r}(t) \neq \mathbf{r}(q)$ and there does not exist $A \in T^0 \setminus V$ with $\mathbf{r}(t) \subseteq A$. Then the principal ideal generated by $[tt^{-1}]$ is a proper *-ideal of S_{Γ} .

Set

$$\begin{split} h_{2} &= S_{\Gamma}^{1}[t_{2}t_{2}^{-1}]S_{\Gamma}^{1} \\ &= \{[\alpha\beta^{-1}]: \alpha \in RP(\Gamma), \beta \in RLP(\Gamma) \setminus T^{0}, \mathbf{r}(\alpha) = \mathbf{r}(\beta) = \mathbf{r}(t_{2})\} \cup \{[0]\} \\ &= \{[\mathbf{r}(t_{2})\beta^{-1}]: \beta \in \{t_{2}, t_{1}t_{2}\}\} \\ &\cup \{[\alpha\beta^{-1}]: \alpha, \beta \in \{t_{2}, t_{1}t_{2}\}\} \\ &\cup \{[\alpha t_{2}^{-1}]: \alpha \in X_{A}t_{1}t_{2}\} \cup \{[\alpha(t_{1}t_{2})^{-1}]: \alpha \in X_{A}t_{1}t_{2}\} \cup \{[0]\} \end{split}$$

Then I_2 is a proper *-ideal of S_{Γ} ;

3

Set

$$\begin{aligned} \mathcal{I}_{3} &= \mathcal{R}_{\Gamma}[t_{2}t_{2}^{-1}]\mathcal{R}_{\Gamma} \\ &= \{[\alpha\beta^{-1}]: \alpha, \beta \in \mathcal{R}L\mathcal{P}(\Gamma) \setminus \mathcal{T}^{0}, \mathbf{r}(\alpha) = \mathbf{r}(\beta) = \mathbf{r}(t_{2})\} \cup \{[0]\} \\ &= \cup\{[\alpha\beta^{-1}]: \alpha, \beta \in \{t_{2}, t_{1}t_{2}\}\} \cup \{[0]\}. \end{aligned}$$

Then I_3 is a proper ideal of R_{Γ} .

æ

Homomorphisms

Definition 9 A homomorphism $\phi = (\phi_V, \phi_T)$ from $\Gamma = (V_{\Gamma}, T_{\Gamma}, \mathbf{s}, \mathbf{r})$ to $\Delta = (V_{\Delta}, T_{\Delta}, \mathbf{s}, \mathbf{r})$ consists of two maps $\phi_V : V_{\Gamma} \to V_{\Delta}$ and $\phi_T : T_{\Gamma} \to T_{\Delta}$ such that for all $t \in T_{\Gamma}$

$$\mathbf{s}(t)\phi = \{\mathbf{v}\phi_{V}: \mathbf{v}\in\mathbf{s}(t)\} = \mathbf{s}(t\phi_{T})$$

and

$$\mathbf{r}(t)\phi = \{\mathbf{v}\phi_{V}: \mathbf{v}\in\mathbf{r}(t)\} = \mathbf{r}(t\phi_{T}).$$

A mapping $\phi = (\phi_V, \phi_T)$ from $\Gamma = (V_{\Gamma}, T_{\Gamma}, \mathbf{s}, \mathbf{r})$ to $\Delta = (V_{\Delta}, T_{\Delta}, \mathbf{s}, \mathbf{r})$, is called **bijective** if ϕ_V and ϕ_T are bijective. A bijective homomorphism ϕ is an **isomorphism**.

Networks Γ and Δ are said to be **isomorphic** if there exists an isomorphism from Γ to Δ . If two networks Γ and Δ are isomorphic we write it as $\Gamma \cong \Delta$.

Homomorphisms

Definition 9 A homomorphism $\phi = (\phi_V, \phi_T)$ from $\Gamma = (V_{\Gamma}, T_{\Gamma}, \mathbf{s}, \mathbf{r})$ to $\Delta = (V_{\Delta}, T_{\Delta}, \mathbf{s}, \mathbf{r})$ consists of two maps $\phi_V : V_{\Gamma} \to V_{\Delta}$ and $\phi_T : T_{\Gamma} \to T_{\Delta}$ such that for all $t \in T_{\Gamma}$

$$\mathbf{s}(t)\phi = \{\mathbf{v}\phi_V : \mathbf{v} \in \mathbf{s}(t)\} = \mathbf{s}(t\phi_T)$$

and

$$\mathbf{r}(t)\phi = \{\mathbf{v}\phi_{V}: \mathbf{v}\in\mathbf{r}(t)\} = \mathbf{r}(t\phi_{T}).$$

A mapping $\phi = (\phi_V, \phi_T)$ from $\Gamma = (V_{\Gamma}, T_{\Gamma}, \mathbf{s}, \mathbf{r})$ to $\Delta = (V_{\Delta}, T_{\Delta}, \mathbf{s}, \mathbf{r})$, is called **bijective** if ϕ_V and ϕ_T are bijective. A bijective homomorphism ϕ is an **isomorphism**.

Networks Γ and Δ are said to be **isomorphic** if there exists an isomorphism from Γ to Δ . If two networks Γ and Δ are isomorphic we write it as $\Gamma \cong \Delta$.

Homomorphisms

Definition 9 A homomorphism $\phi = (\phi_V, \phi_T)$ from $\Gamma = (V_{\Gamma}, T_{\Gamma}, \mathbf{s}, \mathbf{r})$ to $\Delta = (V_{\Delta}, T_{\Delta}, \mathbf{s}, \mathbf{r})$ consists of two maps $\phi_V : V_{\Gamma} \to V_{\Delta}$ and $\phi_T : T_{\Gamma} \to T_{\Delta}$ such that for all $t \in T_{\Gamma}$

$$\mathbf{s}(t)\phi = \{\mathbf{v}\phi_V: \mathbf{v}\in\mathbf{s}(t)\} = \mathbf{s}(t\phi_T)$$

and

$$\mathbf{r}(t)\phi = \{\mathbf{v}\phi_{V}: \mathbf{v}\in\mathbf{r}(t)\} = \mathbf{r}(t\phi_{T}).$$

A mapping $\phi = (\phi_V, \phi_T)$ from $\Gamma = (V_{\Gamma}, T_{\Gamma}, \mathbf{s}, \mathbf{r})$ to $\Delta = (V_{\Delta}, T_{\Delta}, \mathbf{s}, \mathbf{r})$, is called **bijective** if ϕ_V and ϕ_T are bijective. A bijective homomorphism ϕ is an **isomorphism**.

Networks Γ and Δ are said to be **isomorphic** if there exists an isomorphism from Γ to Δ . If two networks Γ and Δ are isomorphic we write it as $\Gamma \cong \Delta$.

Let S be an semigroup with a set E(S) of all idempotents. The relation \leq defined by for all $a, b \in S$,

$$a \leq b$$
 if and only if $a = xb = by$, $xa = a$

for some $x, y \in S^1$, is a partial order on S called the **natural partial order** of S [5]. When the natural partial order is restricted to the set E(S) it is as follows: for all $e, f \in E(S)$,

 $e \leq f$ if and only if e = ef = fe.

Further, E(S) is a partially ordered set with respect to \leq . In particular, if E(S) is a semilattice, for all $e, f \in E$,

 $e \leq f$ if and only if e = ef.

Lemma 12 Let $E(Q_{\Gamma})$ be the set of all idempotents of Q_{Γ} and let \leq be the natural partial order on Q_{Γ} defined above. Then the following statements hold.

- (i) An idempotent $[\alpha \alpha^{-1}]$ is maximal in $E(Q_{\Gamma})$ with respect to \leq if and only if $\alpha \in T^{0}$;
- (ii) An idempotent $[\alpha \alpha^{-1}]$ is maximal in $E = E(Q_{\Gamma}) \setminus \{[A] : A \in T^0\}$ with respect to \leq if and only if $\alpha \in T$.

Theorem 7 Let $\Gamma = (V_{\Gamma}, T_{\Gamma}, \mathbf{s}, \mathbf{r})$ and $\Delta = (V_{\Delta}, T_{\Delta}, \mathbf{s}, \mathbf{r})$ be two networks. Then $\Gamma \cong \Delta$ if and only if $Q_{\Gamma} \cong Q_{\Delta}$. Lemma 12 Let $E(Q_{\Gamma})$ be the set of all idempotents of Q_{Γ} and let \leq be the natural partial order on Q_{Γ} defined above. Then the following statements hold.

- (i) An idempotent $[\alpha \alpha^{-1}]$ is maximal in $E(Q_{\Gamma})$ with respect to \leq if and only if $\alpha \in T^{0}$;
- (ii) An idempotent $[\alpha \alpha^{-1}]$ is maximal in $E = E(Q_{\Gamma}) \setminus \{[A] : A \in T^0\}$ with respect to \leq if and only if $\alpha \in T$.

Theorem 7 Let $\Gamma = (V_{\Gamma}, T_{\Gamma}, \mathbf{s}, \mathbf{r})$ and $\Delta = (V_{\Delta}, T_{\Delta}, \mathbf{s}, \mathbf{r})$ be two networks. Then $\Gamma \cong \Delta$ if and only if $Q_{\Gamma} \cong Q_{\Delta}$.

References

- Abrams, G., Aranda Pino, G.: The Leavitt path algebra of a graph. J Algebra **293** 319-334 (2005)
- Ara, P., Moreno, M. A., Pardo, E.: Nonstable *K*-theory for graph algebras. Algebr Represent Theory, **10** 157-178 (2007)
- Ash, C. J., Hall, T. E.: Inverse semigroups on graphs. Semigroup Forum **11** 140-145 (1975)
- Bianconi, G.: Higher-Order Networks: An Introduction to Simplicial Complex. Cambridge University Press, 2022
- Bowers, P. M., Cokus, S. J., Eisenberg, D., et al. Use of Logic Relationships to Decipher Protein Network Organization. Science 306 2246-2249 (2004)
- Baird, G.R.: Congruence-free inverse semigroups with zero. J. Austral. Math. Soc. **20** (Series A) 110-114 (1975).

 Book, R. V., Otto, F.: String-Rewriting Systems, Springer, 1993.

 (Yanhui Wang)
 Network right *-abundant semigroups
 27th Nov. 2024
 40 / 41

References

- Fountain, J. B.: Adequate semigroups. Proceeding of the Edinburgh Mathematical Society **22(2)** 113-125 (1979)
- Fountain, J. B.: Abundant semigroups. Proc Lond Math Soc 44 103-129 (1982)
- Fountain, J. B.: Free right *h*-adequate semigroups. Semigroups, theory and applications, Lecture Notes in Mathematics 1320, 97-120 (1988)
- Howie, J. M.: An Introduction to Semigroup Theory. Academic Press, London (1976)
- H. Mitsch.: A natural partial order for semigroups. Proceedings of the American Mathematical Society **97(3)** 384-388 (1980)
- W. D. Munn.: Fundamental inverse semigroups. Quart J Math Oxford **21** 157-170 (1970)

